A. | 2 | B. | $\frac{1}{2}$ | C. | -2 | D. | -$\frac{1}{2}$ |
分析 由已知條件求出sinαcosα的值,利用切化弦化簡所求表達式代入求解即可.
解答 解:∵sinα+cosα=-$\sqrt{2}$,
∴(sinα+cosα)2=(-$\sqrt{2}$)2,
解得sinαcosα=$\frac{1}{2}$,
∴tanα+$\frac{1}{tanα}$=$\frac{sinα}{cosα}$+$\frac{cosα}{sinα}$=$\frac{si{n}^{2}α+co{s}^{2}α}{sinαcosα}$=$\frac{1}{\frac{1}{2}}$=2.
故選:A.
點評 本題考查三角函數(shù)的化簡求值,同角三角函數(shù)的基本關系式的應用,基本知識的考查.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
x | 0 | 1 | 2 | 3 | 4 |
y | 2.3 | 3.9 | 4.6 | 5.1 | 6.6 |
A. | 2.45 | B. | 2.54 | C. | 2.64 | D. | 3.04 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {2,4} | B. | {1,2,3,4,5,6,8,10} | ||
C. | {1,2,3,4,5} | D. | {2,4,6,8,10} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 4 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{\sqrt{2}}{2}$ | B. | $\frac{\sqrt{2}}{4}$ | C. | $\frac{\sqrt{14}}{2}$ | D. | $\frac{\sqrt{14}}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -2-2i | B. | 2-2i | C. | -2+2i | D. | 2+2i |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com