【題目】某日,甲乙二人隨機選擇早上6:00﹣7:00的某一時刻到達黔靈山公園早鍛煉,則甲比乙提前到達超過20分鐘的概率為( 。
A.
B.
C.
D.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= ,若方程f(x)=a有四個不同的解x1 , x2 , x3 , x4 , 且x1<x2<x3<x4 , 則x3(x1+x2)+ 的取值范圍是( )
A.(﹣1,+∞)
B.(﹣1,1]
C.(﹣∞,1)
D.[﹣1,1)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,設圓弧x2+y2=1(x≥0,y≥0)與兩坐標軸正半軸圍成的扇形區(qū)域為M,過圓弧上中點A做該圓的切線與兩坐標軸正半軸圍成的三角形區(qū)域為N.現隨機在區(qū)域N內投一點B,若設點B落在區(qū)域M內的概率為P,則P的值為( 。
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知全集為R,集合A={x|y=lgx+ },B={x| <2x﹣a≤8}.
(1)當a=0時,求(RA)∩B;
(2)若A∪B=B,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】建造一個容積為240m3 , 深為5m的長方體無蓋蓄水池,池壁的造價為180元/m2 , 池底的造價為350元/m2 , 如何設計水池的長與寬,才能使水池的總造價為42000元?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ax2﹣2ax+2+b,(a≠0),若f(x)在區(qū)間[2,3]上有最大值5,最小值2.
(1)求a,b的值;
(2)若b<1,g(x)=f(x)﹣mx在[2,4]上為單調函數,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知二次函數f(x)=x2﹣2ax+1,a∈R;
(1)若函數f(x)在區(qū)間(﹣1,2)上是單調函數,求實數a的取值范圍;
(2)若不等式f(x)>0對任x∈R上恒成立,求實數a的取值范圍;
(3)若函數f(x)在區(qū)間[1,+∞)的最小值為﹣2,求實數a的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com