如圖,在平面直角坐標系xOy中,M、N分別是橢圓=1的頂點,過坐標原點的直線交橢圓于P、A兩點,其中P在第一象限,過P作x軸的垂線,垂足為C,連結AC,并延長交橢圓于點B,設直線PA的斜率為k.

(1)若直線PA平分線段MN,求k的值;

(2)當k=2時,求點P到直線AB的距離d;

(3)對任意k>0,求證:PA⊥PB..

 

(1)(2)(3)見解析

【解析】(1)【解析】
由題設知,a=2,b=,故M(-2,0),N(0,-),所以線段MN中點的坐標為.由于直線PA平分線段MN,故直線PA過線段MN的中點.又直線PA過坐標原點,所以k=.

(2)【解析】
將直線PA的方程y=2x代入橢圓方程=1,解得x=±,因此P,A.于是C,直線AC的斜率為=1,故直線AB的方程為x-y-=0.因此,d=

(3)證明:設P(x1,y1),B(x2,y2),則x1>0,x2>0,x1≠x2,A(-x1,-y1),C(x1,0),設直線PA、PB、AB的斜率分別為k、k1、k2.因為C在直線AB上,所以k2=.從而k1k+1=2k1k2+1=2·+1==0.因此k1k=-1,所以PA⊥PB

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第九章第4課時練習卷(解析版) 題型:解答題

在平面直角坐標系xOy中,二次函數(shù)f(x)=x2+2x+b(x∈R)與兩坐標軸有三個交點.記過三個交點的圓為圓C.

(1)求實數(shù)b的取值范圍;

(2)求圓C的方程;

(3)圓C是否經(jīng)過定點(與b的取值無關)?證明你的結論.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第九章第11課時練習卷(解析版) 題型:填空題

已知拋物線y2=2px(p≠0)及定點A(a,b),B(-a,0),ab≠0,b2≠2pa,M是拋物線上的點.設直線AM、BM與拋物線的另一個交點分別為M1、M2,當M變動時,直線M1M2恒過一個定點,此定點坐標為________.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第九章第10課時練習卷(解析版) 題型:解答題

已知橢圓=1(a>b>0)的離心率為,短軸的一個端點為M(0,1),直線l:y=kx-與橢圓相交于不同的兩點A、B.

(1)若AB=,求k的值;

(2)求證:不論k取何值,以AB為直徑的圓恒過點M.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第九章第10課時練習卷(解析版) 題型:填空題

設拋物線y2=8x的準線與x軸交于點Q,若過點Q的直線l與拋物線有公共點,則直線l的斜率的取值范圍是________.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第九章第10課時練習卷(解析版) 題型:填空題

已知雙曲線方程是x2-=1,過定點P(2,1)作直線交雙曲線于P1、P2兩點,并使P(2,1)為P1P2的中點,則此直線方程是____________.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年陜西西工大附中高三上學期第四次適應性訓練理數(shù)學卷(解析版) 題型:解答題

已知函數(shù)

(1)求函數(shù)的最小正周期;

(2)當時,求函數(shù)的最大值,最小值.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年陜西西工大附中高三上學期第四次適應性訓練理數(shù)學卷(解析版) 題型:選擇題

若復數(shù)為純虛數(shù),則實數(shù)的值為( )

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年陜西西安鐵一中國際合作學校高三下第一次模擬考試理科數(shù)學試卷(解析版) 題型:選擇題

已知命題”,命題”,若命題“” 是真命題,則實數(shù)的取值范圍是( )

A. B. C. D.

 

查看答案和解析>>

同步練習冊答案