在平面直角坐標系xOy中,二次函數(shù)f(x)=x2+2x+b(x∈R)與兩坐標軸有三個交點.記過三個交點的圓為圓C.
(1)求實數(shù)b的取值范圍;
(2)求圓C的方程;
(3)圓C是否經過定點(與b的取值無關)?證明你的結論.
(1)<1且b≠0.(2)x2+y2+2x-(b+1)y+b=0(3)C必過定點(-2,1)
【解析】(1)令x=0,得拋物線與y軸的交點是(0,b),令f(x)=0,得x2+2x+b=0,由題意b≠0且Δ>0,解得b<1且b≠0.
(2)設所求圓的一般方程為x2+y2+Dx+Ey+F=0,令y=0,得x2+Dx+F=0,這與x2+2x+b=0是同一個方程,故D=2,F(xiàn)=b,令x=0,得y2+Ey+b=0,此方程有一個根為b,代入得E=-b-1,所以圓C的方程為x2+y2+2x-(b+1)y+b=0.
(3)圓C必過定點(0,1),(-2,1).
證明:將(0,1)代入圓C的方程,得左邊=02+12+2×0-(b+1)×1+b=0,右邊=0,所以圓C必過定點(0,1);同理可證圓C必過定點(-2,1).
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第九章第7課時練習卷(解析版) 題型:解答題
已知橢圓C:=1(a>b>0),點A、B分別是橢圓C的左頂點和上頂點,直線AB與圓G:x2+y2=(c是橢圓的半焦距)相離,P是直線AB上一動點,過點P作圓G的兩切線,切點分別為M、N.
(1)若橢圓C經過兩點、,求橢圓C的方程;
(2)當c為定值時,求證:直線MN經過一定點E,并求·的值(O是坐標原點);
(3)若存在點P使得△PMN為正三角形,試求橢圓離心率的取值范圍..
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第九章第5課時練習卷(解析版) 題型:填空題
在平面直角坐標系xOy中,圓C的方程為x2+y2-8x+15=0,若直線y=kx-2上至少存在一點,使得以該點為圓心,1為半徑的圓與圓C有公共點,則k的最大值是____________.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第九章第4課時練習卷(解析版) 題型:填空題
圓x2+y2-4x=0在點P(1,)處的切線方程為________.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第九章第4課時練習卷(解析版) 題型:填空題
已知實數(shù)x,y滿足(x-2)2+(y+1)2=1,則2x-y的最大值為________,最小值為________.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第九章第4課時練習卷(解析版) 題型:填空題
點(1,1)在圓(x-a)2+(y+a)2=4內,則實數(shù)a的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第九章第3課時練習卷(解析版) 題型:填空題
點(1,cosθ)(其中0≤θ≤π)到直線xsinθ+ycosθ-1=0的距離是,那么θ等于________.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第九章第3課時練習卷(解析版) 題型:填空題
若直線l經過直線2x-y+3=0和3x-y+2=0的交點,且垂直于直線y=2x-1,則直線l的方程為______________.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第九章第10課時練習卷(解析版) 題型:解答題
如圖,在平面直角坐標系xOy中,M、N分別是橢圓=1的頂點,過坐標原點的直線交橢圓于P、A兩點,其中P在第一象限,過P作x軸的垂線,垂足為C,連結AC,并延長交橢圓于點B,設直線PA的斜率為k.
(1)若直線PA平分線段MN,求k的值;
(2)當k=2時,求點P到直線AB的距離d;
(3)對任意k>0,求證:PA⊥PB..
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com