已知函數(shù)y=2sinx+
a
cosx+4的最小值是1,求a的值.
考點(diǎn):兩角和與差的正弦函數(shù)
專題:三角函數(shù)的圖像與性質(zhì)
分析:首先,根據(jù)題意,得到y(tǒng)=
4+a
sin(x+θ)+4,然后,根據(jù)最小值為1,建立等式進(jìn)行化簡(jiǎn)即可求解得到所求的值.
解答: 解:∵y=2sinx+
a
cosx+4
=
4+a
sin(x+θ)+4,(其中tanθ=
a
2
).
∵函數(shù)y=2sinx+
a
cosx+4的最小值是1,
∴-
4+a
+4=-3
∴a=-3,
∴a的值為-3.
點(diǎn)評(píng):本題重點(diǎn)考查了輔助角公式、三角函數(shù)的最值等知識(shí)點(diǎn),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C所對(duì)邊分別為a,b,c,已知bccosA=3,△ABC的面積為2.
(Ⅰ)求cosA的值;
(Ⅱ)若a=2
5
,求b+c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,有下列結(jié)論:
①若A>B,則sinA>sinB;
②若c2<a2+b2,則△ABC為銳角三角形;
③若a,b,c成等差,則sinA+sinC=2sin(A+C);
④若a,b,c成等比,則cosB的最小值為
1
2

其中結(jié)論正確的是
 
.(填上全部正確的結(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若a2與a10的等差中項(xiàng)是-4,且a1•a6=14.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)f(n)=
2Sn-2an
n
(n∈N+),求f(n)最小值及相應(yīng)的n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

公司現(xiàn)有青年人160人,中年人30人,老年人10人,要從其中抽取20個(gè)人進(jìn)行身體健康檢查,則宜采用的抽樣方法是( 。
A、抽簽法B、隨機(jī)數(shù)法
C、系統(tǒng)抽樣法D、分層抽樣法

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在等比數(shù)列{an}中,若a3a6=8,a2a4a5=32,則a2的值為( 。
A、2B、3C、4D、9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)-2≤x≤2,則函數(shù)y=4x-2×2x+5的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

當(dāng)函數(shù)f(x)=2x+1+m的圖象不過(guò)第二象限時(shí),m的取值范圍是(  )
A、m≥2B、m≤-2
C、m>2D、m<-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A={x|x2-4x-5>0},B={x|a≤x<a+4},若A?B.
(1)求∁RA值.
(2)求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案