16.設(shè)集合M={x|x2-2x-3<0},N為自然數(shù)集,則M∩N等于( 。
A.{-2,-1,0}B.{0,1,2}C.[-2,0]D.[0,2]

分析 解出關(guān)于M的不等式,求出M、N的交集即可.

解答 解:由M={x|x2-2x-3<0}={x|-1<x<3},
N是自然數(shù)集,
則M∩N={0,1,2}
故選:A.

點(diǎn)評(píng) 本題考查了集合的運(yùn)算,考查解不等式問(wèn)題,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.不等式x2-3>2|x|的解集是(-∞,-3)∪(3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知橢圓C的中心在原點(diǎn),左焦點(diǎn)為F1(-1,0),右準(zhǔn)線方程為:x=4.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若橢圓C上點(diǎn)N到定點(diǎn)M(m,0)(0<m<2)的距離的最小值為1,求m的值及點(diǎn)N的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.若函數(shù)f(x)在定義域D內(nèi)某區(qū)間I上是增函數(shù),而F(x)=$\frac{f(x)}{x}$在I上是減函數(shù),則稱y=f(x)在I上是“弱增函數(shù)”.
(1)請(qǐng)分別判斷f(x)=x+4,g(x)=x2+4x+2在x∈(1,2)是否是“弱增函數(shù)”,
并簡(jiǎn)要說(shuō)明理由;
(2)若函數(shù)h(x)=x2+(sinθ-$\frac{1}{2}$)x+b(θ、b是常數(shù))
(i)若θ∈[{0,$\frac{π}{2}}$],x∈[0,$\frac{1}{4}}$]求h(x)的最小值.(用θ、b表示);
(ii)在x∈(0,1]上是“弱增函數(shù)”,試探討θ及正數(shù)b應(yīng)滿足的條件,并用單調(diào)性的定義證明..

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知命題p1:設(shè)函數(shù)f(x)=ax2+bx+c(a>0),且f(1)=-a,則f(x)在(0,2)上必有零點(diǎn);
p2:設(shè)a,b∈R,則“a>b”是“a|a|>b|b|”的充分不必要條件.
則在命題q1:p1∨p2,q2:p1∧p2,q3:(¬p1)∨p2和q1:p1∧(¬p2)中,真命題是(  )
A.q1,q3B.q2,q3C.q1,q4D.q2,q4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.直線y=4x+8與兩坐標(biāo)軸所圍成的三角形的面積為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.如圖,在底面是矩形的四棱錐P-ABCD中,PA⊥平面ABCD,PA=AB,E是PD的中點(diǎn).
(1)求證:PB∥平面EAC;
(2)求證:平面PDC⊥平面PAD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.(1-i)2016+(1+i)2016的值是( 。
A.21008B.21009C.0D.22016

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.在平行四邊形ABCD中,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow$,$\overrightarrow{DE}$=2$\overrightarrow{EC}$,則$\overrightarrow{BE}$=(  )
A.$\overrightarrow$-$\frac{1}{3}$$\overrightarrow{a}$B.$\overrightarrow$-$\frac{2}{3}$$\overrightarrow{a}$C.$\overrightarrow$-$\frac{4}{3}$$\overrightarrow{a}$D.$\overrightarrow$+$\frac{1}{3}$$\overrightarrow{a}$

查看答案和解析>>

同步練習(xí)冊(cè)答案