11.在(1-x)5+(1-x)6+(1-x)7+(1-x)8的展開式中,含x3的項的系數(shù)是(  )
A.121B.-74C.74D.-121

分析 利用等比數(shù)列的前n項公式化簡代數(shù)式;利用二項展開式的通項公式求出含x4的項的系數(shù),即是代數(shù)式的含x3的項的系數(shù).

解答 解:(1-x)5+(1-x)6+(1-x)7+(1-x)8
=$\frac{(1-x)^{5}[1-(1-x)^{4}]}{1-(1-x)}$
=$\frac{(1-x)^{5}-(1-x)^{9}}{x}$,
(1-x)5中x4的系數(shù)為${C}_{5}^{4}=5$,-(1-x)9中x4的系數(shù)為-C94=-126,
-126+5=-121.
故選:D

點評 本題考查x3的項的系數(shù)的求法,是中檔題,解題時要 認真審題,注意二項式定理的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

1.若α∈(0,$\frac{π}{2}$),且sin2α+cos2α=$\frac{1}{4}$,則tanα=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知兩函數(shù)y=x2-1與y=1-x3在x=x0處有相同的導數(shù),則x0的值為( 。
A.0B.-$\frac{2}{3}$C.0或-$\frac{2}{3}$D.0或1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.從拋物線y2=32x上各點向x軸作垂線,其垂線段中點的軌跡為E.
(Ⅰ)求軌跡E的方程;
(Ⅱ)已知直線l:y=k(x-2)(k>0)與軌跡E交于A,B兩點,且點F(2,0),若|AF|=2|BF|,求弦AB的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.在△ABC中,若AB=2,AC=3,∠A=60°,則BC=$\sqrt{7}$; 若AD⊥BC,則AD=$\frac{3\sqrt{21}}{7}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知向量$\overrightarrow{a}$=(m,-1),$\overrightarrow$=($\frac{1}{2},\frac{\sqrt{3}}{2}$)
(1)若m=-$\sqrt{3}$,求$\overrightarrow{a}$與$\overrightarrow$的夾角θ;
(2)設$\overrightarrow{a}⊥\overrightarrow$.
①求實數(shù)m的值;
②若存在非零實數(shù)k,t,使得[$\overrightarrow{a}$+(t2-3)$\overrightarrow$]⊥(-k$\overrightarrow{a}$+t$\overrightarrow$),求$\frac{k+{t}^{2}}{t}$的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.將向量$\overrightarrow{a_1}=({{x_1},{y_1}}),\overrightarrow{a_2}=({{x_2},{y_2}}),…\overrightarrow{a_n}=({{x_n},{y_n}})$組成的系列稱為向量列$\left\{{\overrightarrow{a_n}}\right\}$,并定義向量列$\left\{{\overrightarrow{a_n}}\right\}$的前n項和$\overrightarrow{S_n}=\overrightarrow{a_1}+\overrightarrow{a_2}+…+\overrightarrow{a_n}$.如果一個向量列從第二項起,每一項與前一項的差都是同一個向量,那么稱這樣的向量列為等差向量列,若向量列$\left\{{\overrightarrow{a_n}}\right\}$是等差向量列,那么下述向量中,與一定平行$\overrightarrow{{S}_{21}}$的向量是( 。
A.$\overrightarrow{{a_{10}}}$B.$\overrightarrow{{a_{11}}}$C.$\overrightarrow{{a_{20}}}$D.$\overrightarrow{{a_{21}}}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.如圖所示的莖葉圖記錄了甲、乙兩組各5名同學的投籃命中次數(shù),乙組記錄中有一個數(shù)據(jù)模糊,無法確認,在圖中用x表示.
(1)若乙組同學投籃命中次數(shù)的平均數(shù)比甲組同學的平均數(shù)少1,求x及乙組同學投籃命中次數(shù)的方差;
(2)在(1)的條件下,分別從甲、乙兩組投籃命中次數(shù)低于10次的同學中,各隨機選取一名,求這兩名同學的投籃命中次數(shù)之和為16的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右頂點為A,左焦點為F,過F作垂直于x軸的直線與雙曲線相交于B、C兩點,若△ABC為銳角三角形,則雙曲線的離心率的取值范圍為( 。
A.(1,2)B.(1,$\sqrt{2}$)C.($\sqrt{2}$,2)D.(2,+∞)

查看答案和解析>>

同步練習冊答案