【題目】已知函數(shù)在區(qū)間上的最大值為,最小值為,記;
(1)求實(shí)數(shù)、的值;
(2)若不等式對(duì)任意恒成立,求實(shí)數(shù)的范圍;
(3)對(duì)于定義在上的函數(shù),設(shè),,用任意的將劃分為個(gè)小區(qū)間,其中,若存在一個(gè)常數(shù),使得恒成立,則稱(chēng)函數(shù)為上的有界變差函數(shù);
①試證明函數(shù)是在上的有界變差函數(shù),并求出的最小值;
②寫(xiě)出是在上的有界變差函數(shù)的一個(gè)充分條件,使上述結(jié)論成為其特例;(不要求證明)
【答案】(1),;(2);(3)①證明見(jiàn)解析,;②詳見(jiàn)解析
【解析】
由已知中在區(qū)間的最大值為4,最小值為1,結(jié)合函數(shù)的單調(diào)性及最值,我們易構(gòu)造出關(guān)于a,b的方程組,解得a,b的值求出,對(duì)任意恒成立等價(jià)于恒成立,求實(shí)數(shù)k的范圍(3)根據(jù)有界變差函數(shù)的定義,我們先將區(qū)間進(jìn)行劃分,進(jìn)而判斷成立,進(jìn)而得到結(jié)論
函數(shù),
,對(duì)稱(chēng)軸,
在區(qū)間上是增函數(shù),
又函數(shù)故在區(qū)間上的最大值為4,最小值為1,
,
解得:,.
故實(shí)數(shù)a的值為1,b的值為0.
由可知,
,
,
對(duì)任意恒成立,
令
根據(jù)二次函數(shù)的圖象及性質(zhì)可得
則恒成立,即:
令,
則有:,
解得:,
即,
得:
故得實(shí)數(shù)k的范圍為.
(3)①函數(shù)為上的有界變差函數(shù).
因?yàn)楹瘮?shù)為上的單調(diào)遞增函數(shù),且對(duì)任意劃分T:,
有,
所以
恒成立,
所以存在常數(shù)M,使得是恒成立.
M的最小值為4,即.
②是在上的有界變差函數(shù)的一個(gè)充分條件:在上單調(diào)遞增且.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C經(jīng)過(guò)點(diǎn),且圓心在直線上,又直線與圓C交于P,Q兩點(diǎn).
(1)求圓C的方程;
(2)若,求實(shí)數(shù)的值;
(3)過(guò)點(diǎn)作直線,且交圓C于M,N兩點(diǎn),求四邊形的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著科學(xué)技術(shù)的飛速發(fā)展,網(wǎng)絡(luò)也已經(jīng)逐漸融入了人們的日常生活,網(wǎng)購(gòu)作為一種新的消費(fèi)方式,因其具有快捷、商品種類(lèi)齊全、性?xún)r(jià)比高等優(yōu)勢(shì)而深受廣大消費(fèi)者認(rèn)可.某網(wǎng)購(gòu)公司統(tǒng)計(jì)了近五年在本公司網(wǎng)購(gòu)的人數(shù),得到如下的相關(guān)數(shù)據(jù)(其中“x=1”表示2015年,“x=2”表示2016年,依次類(lèi)推;y表示人數(shù)):
x | 1 | 2 | 3 | 4 | 5 |
y(萬(wàn)人) | 20 | 50 | 100 | 150 | 180 |
(1)試根據(jù)表中的數(shù)據(jù),求出y關(guān)于x的線性回歸方程,并預(yù)測(cè)到哪一年該公司的網(wǎng)購(gòu)人數(shù)能超過(guò)300萬(wàn)人;
(2)該公司為了吸引網(wǎng)購(gòu)者,特別推出“玩網(wǎng)絡(luò)游戲,送免費(fèi)購(gòu)物券”活動(dòng),網(wǎng)購(gòu)者可根據(jù)拋擲骰子的結(jié)果,操控微型遙控車(chē)在方格圖上行進(jìn). 若遙控車(chē)最終停在“勝利大本營(yíng)”,則網(wǎng)購(gòu)者可獲得免費(fèi)購(gòu)物券500元;若遙控車(chē)最終停在“失敗大本營(yíng)”,則網(wǎng)購(gòu)者可獲得免費(fèi)購(gòu)物券200元. 已知骰子出現(xiàn)奇數(shù)與偶數(shù)的概率都是,方格圖上標(biāo)有第0格、第1格、第2格、…、第20格。遙控車(chē)開(kāi)始在第0格,網(wǎng)購(gòu)者每拋擲一次骰子,遙控車(chē)向前移動(dòng)一次.若擲出奇數(shù),遙控車(chē)向前移動(dòng)一格(從到)若擲出偶數(shù)遙控車(chē)向前移動(dòng)兩格(從到),直到遙控車(chē)移到第19格勝利大本營(yíng))或第20格(失敗大本營(yíng))時(shí),游戲結(jié)束。設(shè)遙控車(chē)移到第格的概率為,試證明是等比數(shù)列,并求網(wǎng)購(gòu)者參與游戲一次獲得免費(fèi)購(gòu)物券金額的期望值.
附:在線性回歸方程中,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著通識(shí)教育理念的推廣及高校課程改革的深入,選修課越來(lái)越受到人們的重視.國(guó)內(nèi)一些知名院校在公共選修課的設(shè)置方面做了許多有益的探索,并且取得了一定的成果.因?yàn)檫x修課的課程建設(shè)處于探索階段,選修課的教學(xué)、管理還存在很多的問(wèn)題,所以需要在通識(shí)教育的基礎(chǔ)上制定科學(xué)的、可行的解決方案,為學(xué)校選修課程的改革與創(chuàng)新、課程設(shè)置、考試考核、人才培養(yǎng)提供參考.某高校采用分層抽樣法抽取了數(shù)學(xué)專(zhuān)業(yè)的50名參加選修課與不參加選修課的學(xué)生的成績(jī),統(tǒng)計(jì)數(shù)據(jù)如下表:
成績(jī)優(yōu)秀 | 成績(jī)不夠優(yōu)秀 | 總計(jì) | |
參加選修課 | 16 | 9 | 25 |
不參加選修課 | 8 | 17 | 25 |
總計(jì) | 24 | 26 | 50 |
(1)試運(yùn)用獨(dú)立性檢驗(yàn)的思想方法你能否有99%的把握認(rèn)為“學(xué)生的成績(jī)優(yōu)秀與是否參加選修課有關(guān)”,并說(shuō)明理由;
(2)如果從數(shù)學(xué)專(zhuān)業(yè)隨機(jī)抽取5名學(xué)生,求抽到參加選修課的學(xué)生人數(shù)的分布列和數(shù)學(xué)期望(將頻率當(dāng)做概率計(jì)算).
參考公式:,其中.
臨界值表:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面為正方形,底面,,為線段的中點(diǎn),若為線段上的動(dòng)點(diǎn)(不含).
(1)平面與平面是否互相垂直?如果是,請(qǐng)證明;如果不是,請(qǐng)說(shuō)明理由;
(2)求二面角的余弦值的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于函數(shù),下列個(gè)結(jié)論正確的是__________(把你認(rèn)為正確的答案全部寫(xiě)上).
(1)任取,都有;
(2)函數(shù)在上單調(diào)遞增;
(3),對(duì)一切恒成立;
(4)函數(shù)有個(gè)零點(diǎn);
(5)若關(guān)于的方程有且只有兩個(gè)不同的實(shí)根,,則.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)若,求函數(shù)的最值;
(2)討論函數(shù)的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù), ().
(1)當(dāng)時(shí),若函數(shù)與的圖象在處有相同的切線,求的值;
(2)當(dāng)時(shí),若對(duì)任意和任意,總存在不相等的正實(shí)數(shù),使得,求的最小值;
(3)當(dāng)時(shí),設(shè)函數(shù)與的圖象交于 兩點(diǎn).求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問(wèn)題:“遠(yuǎn)望巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增,共燈三百八十一,請(qǐng)問(wèn)尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈( )
A. 1盞 B. 3盞 C. 5盞 D. 9盞
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com