設等差數(shù)列{an}的公差d≠0,a1=4d,若ak是a1與a6的等比中項,則k的值為    
【答案】分析:因為第k項是首項與第6項的等比中項,所以得到第k項的平方等于首項與第6項的積列出一個關系式,利用等差數(shù)列的通項公式,根據(jù)首項為4d,表示出第k項和第6項,代入求得的關系式中即可得到關于k的方程,求出方程的解即可得到k的值.
解答:解:因為a1=4d,且ak是a1與a6的等比中項,
所以ak2=a1•a6=4d•(4d+5d)=36d2,則ak=±6d,
即ak=4d+(k-1)d=4d+2d或ak=4d+(k-1)d=4d-10d,
解得k=3或k=-9(舍去),所以k的值為3.
故答案為:3.
點評:此題考查學生掌握等比數(shù)列的性質,靈活運用等差數(shù)列的通項公式化簡求值,是一道綜合題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設等差數(shù)列{an}的前n項和為Sn.若S2k=72,且ak+1=18-ak,則正整數(shù)k=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•山東)設等差數(shù)列{an}的前n項和為Sn,且S4=4S2,a2n=2an+1.
(1)求數(shù)列{an}的通項公式;
(2)設數(shù)列{bn}的前n項和為TnTn+
an+12n
(λ為常數(shù)).令cn=b2n(n∈N)求數(shù)列{cn}的前n項和Rn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設等差數(shù)列{an}的前n項之和為Sn滿足S10-S5=20,那么a8=
4
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設等差數(shù)列{an}的前n項和為Sn,已知(a4-1)3+2012(a4-1)=1,(a2009-1)3+2012(a2009-1)=-1,則下列結論中正確的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設等差數(shù)列{an}的前n項和為Sn,若S9=81,S6=36,則S3=( 。

查看答案和解析>>

同步練習冊答案