已知奇函數(shù)f(x),在x≥0時(shí)的圖象是如圖所示的拋物線的一部分,
(1)請(qǐng)補(bǔ)全函數(shù)f(x)的圖象;
(2)求函數(shù)f(x)的表達(dá)式;
(3)寫出函數(shù)f(x)的單調(diào)區(qū)間.
分析:(1)根據(jù)奇函數(shù)圖象的特點(diǎn),奇函數(shù)圖象關(guān)于原點(diǎn)對(duì)稱,補(bǔ)全函數(shù)f(x)的圖象;
(2)當(dāng)x大于0時(shí),根據(jù)圖象找出拋物線的頂點(diǎn)坐標(biāo),設(shè)出拋物線的頂點(diǎn)式,又根據(jù)拋物線過(guò)原點(diǎn),把原點(diǎn)坐標(biāo)代入即可確定出拋物線的解析式;當(dāng)x小于0時(shí),-x大于0,代入所求的拋物線解析式中,化簡(jiǎn)可得x小于0時(shí)的解析式,綜上,得到f(x)的分段函數(shù)解析式;
(3)根據(jù)圖象及二次函數(shù)的對(duì)稱軸,即可寫出f(x)的遞增區(qū)間及遞減區(qū)間.
解答:解:(1)由奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱,可得函數(shù)位于y軸左側(cè)的部分,如圖所示:

(2)當(dāng)x≥0時(shí),設(shè)f(x)=a(x-1)2-1,又f(0)=0,得a=1,即f(x)=(x-1)2-1;
當(dāng)x<0時(shí),-x>0,則f(x)=-f(-x)=-[(-x-1)2-1]=-(x+1)2+1,
(3)根據(jù)函數(shù)圖象可知:
函數(shù)f(x)的單調(diào)遞增區(qū)間是:(-∞,-1],[1,+∞);
函數(shù)f(x)的單調(diào)遞減區(qū)間是:[-1,1].
點(diǎn)評(píng):本題考查了奇偶函數(shù)的對(duì)稱性、函數(shù)的單調(diào)性以及二次函數(shù)的圖象與性質(zhì).要求學(xué)生掌握奇偶函數(shù)的性質(zhì)及二次函數(shù)的性質(zhì),掌握二次函數(shù)解析式的確定方法,運(yùn)用數(shù)形結(jié)合的思想解決數(shù)學(xué)問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知奇函數(shù)f(x)為R上的減函數(shù),則關(guān)于a的不等式f(a2)+f(2a)>0的解集是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知f(x)=lg
1-x1+x
,判斷f(x)的奇偶性
(2)已知奇函數(shù)f(x)的定義域?yàn)镽,x∈(-∞,0)時(shí),f(x)=-x2-x-1,求f(x)解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下面四個(gè)命題:
①已知函數(shù)f(x)=
x
 ,x≥0 
-x
 ,x<0 
且f(a)+f(4)=4,那么a=-4;
②一組數(shù)據(jù)18,21,19,a,22的平均數(shù)是20,那么這組數(shù)據(jù)的方差是2;
③要得到函數(shù)y=sin(2x+
π
3
)
的圖象,只要將y=sin2x的圖象向左平移
π
3
單位;
④已知奇函數(shù)f(x)在(0,+∞)為增函數(shù),且f(-1)=0,則不等式f(x)<0的解集{x|x<-1}.
其中正確的是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知奇函數(shù)f(x)的定義域?yàn)镽,且f(x)是以2為周期的周期函數(shù),數(shù)列{an}是首項(xiàng)為1,公差為1的等差數(shù)列,則f(a1)+f(a2)+…+f(a2008)的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知奇函數(shù)f(x)滿足f(x)=-f(x+2),當(dāng)x∈[0,1]時(shí),f(x)=x,若af2(x)+bf(x)+c=0在x∈[0,6]上恰有5個(gè)根,且記為xi(i=1,2,3,4,5),則x1+x2+x3+x4+x5=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案