【題目】給出以下問題:
①求面積為1的正三角形的周長;
②求鍵盤所輸入的三個數(shù)的算術(shù)平均數(shù);
③求鍵盤所輸入的兩個數(shù)的最小數(shù);
④求函數(shù)當(dāng)自變量取x0時的函數(shù)值.
其中不需要用條件語句來描述算法的問題有

【答案】①②
【解析】解:①求面積為1的正三角形的周長用順序結(jié)構(gòu)即可,故不需要用條件語句描述;
②求鍵盤所輸入的三個數(shù)的算術(shù)平均數(shù)用順序結(jié)構(gòu)即可解決問題,不需要用條件語句描述;
③求鍵盤所輸入兩個數(shù)的最小數(shù),由于要作出判斷,找出最小數(shù),故本問題的解決要用到條件語句描述;
④因為函數(shù)是一個分段函數(shù),即自變量取不同值時,求對應(yīng)的函數(shù)值時,需要代入相應(yīng)的解析式,需要用條件語句描述.
所以答案是:①②.
【考點精析】解答此題的關(guān)鍵在于理解算法的特點的相關(guān)知識,掌握算法的特點:有限性、確定性、順序性與正確性、不唯一性、普遍性.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= 在(﹣1,+∞)是增函數(shù).
(1)當(dāng)b=1時,求a的取值范圍.
(2)若g(x)=f(x)﹣1008沒有零點,f(1)=0,求f(﹣3)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱ABC﹣A1B1C1中,AA1⊥底面ABC,AC⊥BC,AC=BC= AA1=2,D是AC的中點.

(1)求證:B1C∥平面A1BD;
(2)求直線AC與平面A1BD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,為了測量對岸A,B兩點的距離,沿河岸選取C,D兩點,測得CD=2km,∠CDB=∠ADB=30°,∠ACD=60°,∠ACB=45°,求A,B兩點的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】葫蘆島市交通局為了解機(jī)動車駕駛員對交通法規(guī)的知曉情況,對渤海、豐樂、安寧、天正四個社區(qū)做分層抽樣調(diào)查.其中渤海社區(qū)有駕駛員96人.若在渤海、豐樂、安寧、天正四個社區(qū)抽取駕駛員的人數(shù)分別為12,21,25,43,則豐樂、安寧、天正三個社區(qū)駕駛員人數(shù)是多少( )
A.101
B.808
C.712
D.89

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an},{bn}滿足a1=1,a2=2,b1=2,且對任意的正整數(shù)i,j,k,l,當(dāng)i+j=k+l時,都有ai+bj=ak+bl , 則 的值是(
A.2012
B.2013
C.2014
D.2015

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)高三年級從甲、乙兩個班級各選出8名學(xué)生參加數(shù)學(xué)競賽,他們?nèi)〉玫某煽儯M分100分)的莖葉圖如圖所示,其中甲班學(xué)生成績的平均分是86,乙班學(xué)生成績的中位數(shù)是83,則 的值為( )

A.9
B.10
C.11
D.13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在圓x2+y2=5x內(nèi),過點 有n條弦的長度成等差數(shù)列,最短弦長為數(shù)列的首項a1 , 最長弦長為an , 若公差 ,那么n的取值集合

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知全集U=R,函數(shù) 的定義域為集合A,集合B={x|5≤x<7}
(1)求集合A;
(2)求(UB)∩A.

查看答案和解析>>

同步練習(xí)冊答案