18.在平行四邊形ABCD中,O是對角線的交點,$\overrightarrow{CE}$=-3$\overrightarrow{DE}$,則( 。
A.$\overrightarrow{OE}$=-$\frac{1}{4}$$\overrightarrow{AB}$+$\frac{1}{2}$$\overrightarrow{AD}$B.$\overrightarrow{OE}$=-$\frac{1}{2}$$\overrightarrow{AB}$+$\frac{1}{4}$$\overrightarrow{AD}$C.$\overrightarrow{OE}$=$\frac{1}{2}$$\overrightarrow{AB}$-$\frac{1}{4}$$\overrightarrow{AD}$D.$\overrightarrow{OE}$=$\frac{1}{4}$$\overrightarrow{AB}$-$\frac{1}{2}$$\overrightarrow{AD}$

分析 由題意知$\overrightarrow{CE}$=-$\frac{3}{4}$$\overrightarrow{AB}$,$\overrightarrow{OC}$=$\frac{1}{2}$($\overrightarrow{AB}$+$\overrightarrow{AD}$),從而求$\overrightarrow{OE}$.

解答 解:∵$\overrightarrow{CE}$=-3$\overrightarrow{DE}$,
∴$\overrightarrow{CE}$=$\frac{3}{4}$$\overrightarrow{CD}$=-$\frac{3}{4}$$\overrightarrow{AB}$,
∴$\overrightarrow{OC}$=$\frac{1}{2}$$\overrightarrow{AC}$=$\frac{1}{2}$($\overrightarrow{AB}$+$\overrightarrow{AD}$),
∴$\overrightarrow{OE}$=$\overrightarrow{OC}$+$\overrightarrow{CE}$=$\frac{1}{2}$($\overrightarrow{AB}$+$\overrightarrow{AD}$)-$\frac{3}{4}$$\overrightarrow{AB}$═$\frac{1}{2}$$\overrightarrow{AB}$-$\frac{1}{4}$$\overrightarrow{AD}$,
故選C.

點評 本題考查了平面向量線性運算的應(yīng)用及數(shù)形結(jié)合的思想方法應(yīng)用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)f(x)=ax2+|x-2a|,其中a>0
(1)當a=1時,求f(x)在[0,+∞)上的最小值;
(2)若函數(shù)g(x)=f(x)-b在[0,+∞)上有兩個零點,求實數(shù)b的取值范圍(用a表示).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.如圖,已知平面α⊥β,α∩β=l,A,B是直線l上的兩點,C、D是平面β內(nèi)的兩點,且DA⊥l,CB⊥l,AD=3,AB=6,CB=6,P是平面α上的一動點,且直線PD,PC與平面α所成角相等,則二面角P-BC-D的余弦值的最小值是$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.對于定義域為D的函數(shù)f(x),如果滿足存在區(qū)間[a,b]⊆D使得f(x)在區(qū)間[a,b]上的值域為[ka,kb](k∈N*),那么函數(shù)f(x)叫做[a,b]上的“k級矩形”函數(shù).
(1)設(shè)函數(shù)f(x)=x3(x∈R)是[a,b]上的“1級矩形”函數(shù),求常數(shù)a,b的值;
(2)證明:函數(shù)g(x)=$\frac{1}{x+2}$(x>-2)不是“k級矩形”函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.成等差數(shù)列的三個正數(shù)的和等于6,并且這三個數(shù)分別加上3、6、13后成為等比數(shù)列{bn}中的b3、b4、b5,則數(shù)列{bn}的通項公式為( 。
A.bn=2n-1B.bn=3n-1C.bn=2n-2D.bn=3n-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.給出以下命題:
①“a=0”是“函數(shù)f(x)=x2+ax,(x∈R)為偶函數(shù)的充要條件”;
②?x∈N,使x2≤x;
③命題“若α是銳角,則sinα>0”的否命題
其中說法正確的是①②.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.設(shè)Sn是等差數(shù)列{an}的前n項和,若a1=-16,公差為2.那么使Sn取得最小值的n等于(  )
A.8B.8或9C.9或10D.7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知A(1,-1),B(x,y),且實數(shù)x,y滿足不等式組:$\left\{\begin{array}{l}{2x-y+2≥0}\\{x+y≥2}\\{x≤2}\end{array}\right.$,則z=$\overrightarrow{OA}$•$\overrightarrow{OB}$的最小值為( 。
A.2B.-2C.-4D.-6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.(1+x)(2+x)(3+x)…(20+x)的展開式中x19的系數(shù)是210.

查看答案和解析>>

同步練習冊答案