分析 (Ⅰ)由已知得an+1=3an.從而{an}是公比為3,首項為9的等比數(shù)列,由此能求出數(shù)列{an}的通項公式.
(Ⅱ)求出Sn=-$\frac{9}{2}$+$\frac{9}{2}$-3n,從而${S}_{n}+\frac{9}{2}$=$\frac{9}{2}$•3n=$\frac{27}{2}•{3}^{n-1}$,由此能證明數(shù)列{${S}_{n}+\frac{9}{2}$}是以$\frac{27}{2}$為首項,公比為3的等比數(shù)列.
解答 解:(Ⅰ)∵Sn=3(Sn-1+3),∴Sn+1=3(Sn+3),
∴an+1=3an.故{an}是公比為3,首項為9的等比數(shù)列,
∴an=3n+1.---(5分)
證明:(Ⅱ)因為${a}_{n}=9•{3}^{n-1}$,所以Sn=$\frac{9(1-{3}^{n})}{1-3}$=-$\frac{9}{2}$+$\frac{9}{2}$-3n,(7分)
所以,${S}_{n}+\frac{9}{2}$=$\frac{9}{2}$•3n=$\frac{27}{2}•{3}^{n-1}$,(9分)
${S}_{1}+\frac{9}{2}$=$\frac{9}{2}•3$=$\frac{27}{2}$,$\frac{{S}_{n+1}+\frac{9}{2}}{{S}_{n}+\frac{9}{2}}$=$\frac{\frac{27}{2}•{3}^{n}}{\frac{27}{2}•{3}^{n-1}}$=3.(10分)
故,數(shù)列{${S}_{n}+\frac{9}{2}$}是以$\frac{27}{2}$為首項,公比為3的等比數(shù)列.(12分)
點評 本題考查數(shù)列的通項公式的求法,考查等比數(shù)列的證明,是中檔題,解題時要認(rèn)真審題,注意等比數(shù)列的性質(zhì)的合理運用.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{1}{2}$)${\;}^{\frac{2}{3}}$<($\frac{1}{5}$)${\;}^{\frac{2}{3}}$<($\frac{1}{2}$)${\;}^{\frac{1}{3}}$ | B. | ($\frac{1}{2}$)${\;}^{\frac{1}{3}}$>($\frac{1}{2}$)${\;}^{\frac{2}{3}}$>($\frac{1}{5}$)${\;}^{\frac{2}{3}}$ | ||
C. | ($\frac{1}{2}$)${\;}^{\frac{1}{3}}$<($\frac{1}{2}$)${\;}^{\frac{2}{3}}$<($\frac{1}{5}$)${\;}^{\frac{2}{3}}$ | D. | ($\frac{1}{2}$)${\;}^{\frac{2}{3}}$><($\frac{1}{5}$)${\;}^{\frac{2}{3}}$>($\frac{1}{2}$)${\;}^{\frac{1}{3}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{4}{9}$ | B. | $\frac{5}{9}$ | C. | $\frac{25}{36}$ | D. | $\frac{11}{36}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 8+4$\sqrt{3}$ | B. | 8+4$\sqrt{2}$ | C. | 8+16$\sqrt{2}$ | D. | 8+8$\sqrt{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com