(1)
a1=,a2=,a3=,a4=,
∴
a1=,n≥2時,
an=,其中k∈N
*(2)因為存在
an+1=|an-1|=,
所以當(dāng)a
n≥1時,a
n+1≠a
n①若0<a
1<1,則a
2=1-a
1,a
3=1-a
2=a
1,此時只需:a
2=1-a
1=a
1,∴
a1=故存在
a1=,an=,(n∈N*)②若a
1=b≥1,不妨設(shè)b∈[m,m+1),m∈N
*,易知a
m+1=b-m∈[0,1),
∴a
m+2=1-a
m+1=1-(b-m)=a
m+1=b-m
∴
b=m+,∴
a1=m+,n≥m+1時,
an=,(m∈N*)③若a
1=c<0,不妨設(shè)c∈(-l,-l+1),l∈N
*,易知a
2=-c+1∈(l,l+1],
∴a
3=a
2-1=-c,,a
l+2=-c-(l-1)∈(0,1]
∴
c=-l+,∴
a1=-l+(l∈N*),n≥l+2,則
an=故存在三組a
1和n
0:
a1=時,n
0=1;
a1=m+時,n
0=m+1;
a1=-m+時,n
0=m+2其中m∈N
*(3)當(dāng)a
1=a∈(k,k+1)(k∈N
*)時,
易知a
2=a-1,a
3=a-2,,a
k=a-(k-1),
a
k+1=a-k∈(0,1)a
k+2=1-a
k+1=k+1-a,
a
k+3=1-a
k+2=a-k,a
k+4=1-a
k+3=k+1-a,
a
3k-1=a-k,a
3k=k+1-a
∴S
3k=a
1+a
2++a
k+a
k+1+a
k+2+a
k+3+a
k+4++a
3k-1+a
3k=a+(a-1)+(a-2)++a-(k-1)+k
-+k(a+)