分析 由約束條件作出可行域,化目標函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標,代入目標函數(shù)求得a值.
解答 解:畫出不等式組表示的可行域如圖中陰影部分所示,
由z=a2x+y得y=-a2x+z,目標函數(shù)z的最大值,即是直線y=-a2x+z在y軸上的最大截距.
由圖形可知,當(dāng)直線y=-a2x+z過點A時,在y軸上的截距取得最大值.
由$\left\{{\begin{array}{l}{x-y+2=0}\\{3x+y-9=0}\end{array}}\right.$,解得$A({\frac{7}{4},\frac{15}{4}})$,則$\frac{7}{4}{a^2}+\frac{15}{4}=4$,
注意到a>0,求得$a=\frac{{\sqrt{7}}}{7}$.
故答案為:$\frac{{\sqrt{7}}}{7}$.
點評 本題考查簡單的線性規(guī)劃,考查數(shù)形結(jié)合的解題思想方法,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{3}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$或$\frac{2π}{3}$ | D. | $\frac{π}{4}$或$\frac{3π}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{2}$ | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com