6.已知命題p:lg(x2-2x-2)≥0;命題q:0<x<4.若p且q為假,p或q為真,求實(shí)數(shù)x的取值范圍.

分析 分別求出p,¬p以及¬q的范圍,根據(jù)p,q的真假,得到關(guān)于x的不等式組,解出即可.

解答 解:由lg(x2-2x-2)≥0,得x2-2x-2≥1,
∴x≥3,或x≤-1.即p:x≥3,或x≤-1,
∴非p:-1<x<3.又∵q:0<x<4,
∴非q:x≥4,或x≤0,
由p且q為假,p或q為真知p、q一真一假.
當(dāng)p真q假時(shí),由$\left\{\begin{array}{l}{x≥3或x≤-1}\\{x≥4或x≤0}\end{array}\right.$,得x≥4,或x≤-1.
當(dāng)p假q真時(shí),由$\left\{\begin{array}{l}{-1<x<3}\\{0<x<4}\end{array}\right.$,得0<x<3.
綜上知,實(shí)數(shù)x的取值范圍是{x|x≤-1,或0<x<3,或x≥4}.

點(diǎn)評(píng) 本題考查了對(duì)數(shù)函數(shù)以及復(fù)合命題的真假,考查分類討論思想,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.“k>$-\frac{{\sqrt{3}}}{3}$”是“直線y=k(x+1)與圓(x-1)2+y2=1相交”的(  )
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知集合A={1,2,3,4},B={x|y=$\sqrt{3-x}$},則A∩B=( 。
A.{1,2}B.{1,2,3}C.{4,5}D.{3,4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.(x-1)(x+2)6的展開式中x4的系數(shù)為( 。
A.100B.15C.-35D.-220

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,四棱錐P-ABCD的底面是直角梯形,AB∥CD,AB⊥AD,△PAB和△PAD是兩個(gè)邊長為2的正三角形,DC=4,O為BD的中點(diǎn),E為PA的一動(dòng)點(diǎn).
(1)求證:PO⊥平面ABCD;
(2)求直線CB與平面PDC所成角的正弦值;
(3)當(dāng)$\overrightarrow{PE}=λ\overrightarrow{PA}$時(shí),二面角E-BD-A的余弦值為$\frac{{\sqrt{5}}}{5}$,求實(shí)數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)函數(shù)f(x)=ex-x,h(x)=f(x)+x-alnx.
(1)求函數(shù)f(x)在區(qū)間[-1,1]上的值域;
(2)證明:當(dāng)a>0時(shí),h(x)≥2a-alna.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知變量x,y滿足約束條件$\left\{\begin{array}{l}{|x-y|≤1}\\{|2x+y|≤2}\end{array}\right.$則|x-$\frac{1}{3}$|-y的最大值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)集合M={α|α=k•90°-36°,k∈Z},N={α|-180°<α<180°},則M∩N=( 。
A.{-36°,54°}B.{-126°,144°}
C.{-36°,54°,-126°,144°}D.{54°,-126°}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)變量x,y滿足$\left\{{\begin{array}{l}{x-y+2≥0}\\{x+2y-2≥0}\\{3x+y-9≤0}\end{array}}\right.$.若z=a2x+y(a>0)的最大值為 4.則 a=$\frac{\sqrt{7}}{7}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案