【題目】已知橢圓:的右焦點為,過作互相垂直的兩條直線分別與相交于,和,四點.
(1)四邊形能否成為平行四邊形,請說明理由;
(2)求的最小值.
【答案】(1)見解析.
(2).
【解析】
試題分析:(1)若四邊形為平行四邊形,則四邊形為菱形, ∴與在點處互相平分,又的坐標為顯然這時不是平行四邊形.
(2)直線的斜率存在且不為零時,設直線的方程為,與橢圓方程聯(lián)立,消去,利用韋達定理及弦長公式,
令,則.考慮當直線的斜率不存在時和直線的斜率為零時情況得到的最小值
試題解析:設點
(Ⅰ)若四邊形為平行四邊形,則四邊形為菱形,
∴與在點處互相平分,又F的坐標為,由橢圓的對稱性知垂直于軸,則垂直于軸,
顯然這時不是平行四邊形.
∴四邊形不可能成為平行四邊形.
(Ⅱ) 當直線的斜率存在且不為零時,設直線的方程為
由消去得,
∴
∴同理得,.∴,
令,則.
當直線的斜率不存在時,則
當直線的斜率為零時,則
,∴的最小值為.
科目:高中數(shù)學 來源: 題型:
【題目】已知圓經過兩點,,且圓心在直線:上.
(1)求圓的方程;
(2)設圓與軸相交于、兩點,點為圓上不同于、的任意一點,直線、交軸于、點.當點變化時,以為直徑的圓是否經過圓內一定點?請證明你的結論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在某屆世界杯足球賽上,a,b,c,d四支球隊進入了最后的比賽,在第一輪的兩場比賽中,a對b,c對d,然后這兩場比賽的勝者將進入冠亞軍決賽,這兩場比賽的負者比賽,決出第三名和第四名.比賽的一種最終可能結果記為acbd(表示a勝b,c勝d,然后a勝c,b勝d).
(1)寫出比賽所有可能結果構成的樣本空間;
(2)設事件A表示a隊獲得冠軍,寫出A包含的所有可能結果;
(3)設事件B表示a隊進入冠亞軍決賽,寫出B包含的所有可能結果.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】關于圓周率,數(shù)學發(fā)展史上出現(xiàn)過許多很有創(chuàng)意的求法,如著名的蒲豐試驗.受其啟發(fā),我們也可以通過設計下面的試驗來估計的值,試驗步驟如下:①先請高二年級 500名同學每人在小卡片上隨機寫下一個實數(shù)對;②若卡片上的能與1構成銳角三角形,則將此卡片上交;③統(tǒng)計上交的卡片數(shù),記為;④根據(jù)統(tǒng)計數(shù)估計的值.假如本次試驗的統(tǒng)計結果是,那么可以估計的值約為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義域為的函數(shù)滿足:對于任意的實數(shù)都有成立,且當時, 恒成立,且是一個給定的正整數(shù)).
(1)判斷函數(shù)的奇偶性,并證明你的結論;
(2)判斷并證明的單調性;若函數(shù)在上總有成立,試確定應滿足的條件;
(3)當時,解關于的不等式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】假設有5個條件類似的女孩(把她們分別記為A,B,C,D, E)應聘秘書工作,但只有2個秘書職位,因此5個人中只有2人能被錄用.如果5個人被錄用的機會相等,分別計算下列事件的概率;
(1)女孩A得到一個職位;
(2)女孩A和B各得到一個職位;
(3)女孩A或B得到一個職位.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱柱中,點P,G分別是,的中點,已知⊥平面ABC,==3,==2.
(I)求異面直線與AB所成角的余弦值;
(II)求證:⊥平面;
(III)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知離心率為的橢圓C:(a>b>0)的左焦點為,過作長軸的垂線交橢圓于、兩點,且.
(I)求橢圓C的標準方程;
(II)設O為原點,若點A在直線上,點B在橢圓C上,且,求線段AB長度的最小值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com