等比數(shù)列{an}中,已知對任意自然數(shù)n,a1+a2+a3+…+an=2n-1,則a12+a22+a32+…+an2等于   
【答案】分析:根據(jù)所給的對任意自然數(shù)n,a1+a2+a3+…+an=2n-1,給n取1和2,得到數(shù)列的前兩項,得到等比數(shù)列{an2}是等比數(shù)列,應(yīng)用等比數(shù)列的前n項和公式得到結(jié)果.
解答:解:∵當(dāng)n=2時,a1+a2=3,
當(dāng)n=1時,a1=1,
∴a2=2,
∴公比q=2,
∴等比數(shù)列{an}是首項是1,公比是2的等比數(shù)列,
∵a12=1,a22=4,
∴等比數(shù)列{an2}是首項是1,公比是4的等比數(shù)列,
∴a12+a22+a32+…+an2==,
故答案為:
點評:有的數(shù)列可以通過遞推關(guān)系式構(gòu)造新數(shù)列,構(gòu)造出一個我們較熟悉的數(shù)列,從而求出數(shù)列的通項公式.這類問題考查學(xué)生的靈活性,考查學(xué)生分析問題及運用知識解決問題的能力,這是一種化歸能力的體現(xiàn).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

等比數(shù)列{an}中,a2=18,a4=8,則公比q等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}中,a1=0,an+1=
1
2-an

(Ⅰ)求數(shù)列{an}的通項公式an;
(Ⅱ)設(shè)數(shù)列{an}的前n項和為Sn,證明:Sn<n-ln(n+1);
(Ⅲ)設(shè)bn=an
9
10
n,證明:對任意的正整數(shù)n、m,均有|bn-bm|<
3
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等比數(shù)列{an}中,a3=2,a7=32,則a5=
8
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}中,an=2×3n-1,則由此數(shù)列的奇數(shù)項所組成的新數(shù)列的前n項和為
9n-1
4
9n-1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等比數(shù)列{an}中,已知對n∈N*有a1+a2+…+an=2n-1,那么
a
2
1
+
a
2
2
+…+
a
2
n
等于( 。

查看答案和解析>>

同步練習(xí)冊答案