【題目】在△ABC中,角A,B,C的對(duì)邊分別是a、b、c,已知
(Ⅰ)求角A的大;
(Ⅱ)若b=3,△ABC的面積為 ,求a的值.
【答案】(Ⅰ) ;(Ⅱ)
【解析】試題分析:(Ⅰ)利用向量平行,列出方程,通過兩角和與差的三角函數(shù),化簡求解角A的大小;(Ⅱ)利用三角形的面積,求出c,然后利用余弦定理求解a即可.
試題解析:解:(Ⅰ)∵,∴(2c﹣b)cosA﹣acosB=0,
∴cosA(2sinC﹣sinB)﹣sinAcosB=0,
即2cosAsinC﹣cosAsinB﹣sinAcosB=0,
∴2cosAsinC=cosAsinB+sinAcosB,
∴2cosAsinC=sin(A+B),
即2cosAsinC=sinC,
∵sinC≠0∴2cosA=1,即又0<A<π∴,
(Ⅱ)∵b=3,由(Ⅰ)知∴,,
∴c=4,由余弦定理有a2=b2+c2﹣2bccosA=,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),
(I)當(dāng)時(shí),求函數(shù)的最小值;
(Ⅱ)若函數(shù)在上有零點(diǎn),求實(shí)數(shù)的范圍;
(III)證明不等式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A(0,﹣2),橢圓E: =1(a>b>0)的離心率為 ,F(xiàn)是橢圓的焦點(diǎn),直線AF的斜率為 ,O為坐標(biāo)原點(diǎn).
(Ⅰ)求E的方程;
(Ⅱ)設(shè)過點(diǎn)A的直線l與E相交于P,Q兩點(diǎn),當(dāng)△OPQ的面積最大時(shí),求l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列、,其中, ,數(shù)列滿足,,數(shù)列滿足.
(1)求數(shù)列、的通項(xiàng)公式;
(2)是否存在自然數(shù),使得對(duì)于任意有恒成立?若存在,求出的最小值;
(3)若數(shù)列滿足,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|﹣2≤x≤5},B={x|m+1≤x≤2m﹣1}.
(1)當(dāng)m=3時(shí),求集合A∩B,A∪B;
(2)若BA,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sin2x﹣cos2x﹣2sinx cosx(x∈R).
(Ⅰ)求f()的值.
(Ⅱ)求f(x)的最小正周期及單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C對(duì)應(yīng)的邊分別是a,b,c且cos2B+3cosB﹣1=0.
(1)求角B的大小;
(2)若a+c=1,求b的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}滿足a4=5,a2+a8=14,數(shù)列{bn}滿足b1=1,bn+1=2 bn .
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)求數(shù)列{ }的前n項(xiàng)和;
(3)若cn=an( ) ,求數(shù)列{cn}的前n項(xiàng)和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,且過點(diǎn).
(Ⅰ)求橢圓的方程.
(Ⅱ)若, 是橢圓上兩個(gè)不同的動(dòng)點(diǎn),且使的角平分線垂直于軸,試判斷直線的斜率是否為定值?若是,求出該值;若不是,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com