精英家教網 > 高中數學 > 題目詳情

【題目】已知等差數列{an}滿足a4=5,a2+a8=14,數列{bn}滿足b1=1,bn+1=2 bn
(1)求數列{an}和{bn}的通項公式;
(2)求數列{ }的前n項和;
(3)若cn=an ,求數列{cn}的前n項和Sn

【答案】
(1)解:∵等差數列{an}滿足a4=5,a2+a8=14,

,解得a1=﹣1,d=2,

∴an=2n﹣3.

∵數列{bn}滿足b1=1,bn+1=2 bn

,∴ ,

以上各式相乘,得 ,

∵b1=1,∴


(2)解:∵ ,

∴數列{ }的前n項和為:

=1﹣ ,


(3)解:∵an=2n﹣3,cn=an ,

,

,①

2Sn=﹣12+122+…+(2n﹣5)2n1+(2n﹣3)2n,②

①﹣②,得 ﹣(2n﹣3)2n

=﹣1+2 ﹣(2n﹣3)2n

=(5﹣2n)2n﹣5,


【解析】(1)由已知條件利用等差數列的通項公式列出方程組求出首項和公差,由此能求出等差數列{an}的通項公式;由已知條件得 ,由此利用累乘法能求出 .(2)由 ,利用裂項求和法能求出數列{ }的前n項和.(3) ,由此利用錯位相減法能求出數列{cn}的前n項和Sn
【考點精析】根據題目的已知條件,利用數列的前n項和和數列的通項公式的相關知識可以得到問題的答案,需要掌握數列{an}的前n項和sn與通項an的關系;如果數列an的第n項與n之間的關系可以用一個公式表示,那么這個公式就叫這個數列的通項公式.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=bax(a>0,且a≠1,b∈R)的圖象經過點A(1,6),B(3,24).
(1)設g(x)= ,確定函數g(x)的奇偶性;
(2)若對任意x∈(﹣∞,1],不等式( x≥2m+1恒成立,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】ABC中,角A,B,C的對邊分別是a、b、c,已知

求角A的大;

(Ⅱ)若b=3,ABC的面積為 ,求a的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖 ,在四棱錐中, , , 為棱的中點, .

(1)證明: 平面;

(2)若二面角的大小為,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數處取得極小值.

(1)求實數的值;

(2)設,其導函數為,若的圖象交軸于兩點,設線段的中點為,試問是否為的根?說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】中國移動通信公司早前推出全球通移動電話資費個性化套餐”,具體方案如下:

方案代號

基本月租(元)

免費時間(分鐘)

超過免費時間的話費(元/分鐘)

1

30

48

060

2

98

170

060

3

168

330

050

4

268

600

045

5

388

1000

040

6

568

1700

035

7

788

2588

030

I)寫出套餐中方案的月話費(元)與月通話量(分鐘)(月通話量是指一個月內每次通話用時之和)的函數關系式;

II)學生甲選用方案,學生乙選用方案,某月甲乙兩人的電話資費相同,通話量也相同,求該月學生甲的電話資費;

III)某用戶的月通話量平均為320分鐘,則在表中所列出的七種方案中,選擇哪種方案更合算,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設直線l:3x+4y+4=0,圓C:(x﹣2)2+y2=r2(r>0),若圓C上存在兩點P,Q,直線l上存在一點M,使得∠PMQ=90°,則r的取值范圍是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某商品最近30天的價格f(t)(元)與時間t滿足關系式:f(t)= ,且知銷售量g(t)與時間t滿足關系式 g(t)=﹣t+30,(0≤t≤30,t∈N+),求該商品的日銷售額的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知A、B、C為△ABC的三內角,且其對邊分別為a、b、c,若acosC+ccosA=﹣2bcosA.
(1)求角A的值;
(2)若a=2 ,b+c=4,求△ABC的面積.

查看答案和解析>>

同步練習冊答案