15.如圖所示,在梯形ABCD中,AB=10,CD=4,AD=BC=5,動(dòng)點(diǎn)P從B點(diǎn)開(kāi)始沿著折線(xiàn)BC,CD,DA前進(jìn)至A,若P點(diǎn)運(yùn)動(dòng)的路程為x,△PAB的面積為y.

(1)求y=f(x)的解析式,并指出函數(shù)的定義域;
(2)畫(huà)出函數(shù)的圖象并寫(xiě)出函數(shù)的值域.

分析 (1)需要分三類(lèi)討論,確定函數(shù)解析式,得出分段函數(shù);
(2)作出函數(shù)圖象,得到函數(shù)值域.

解答 解:(1)如圖所示,分類(lèi)討論如下:
①當(dāng)P在BC上運(yùn)動(dòng)時(shí),如圖①所示,易知sin∠B=$\frac{4}{5}$,
y=$\frac{1}{2}$×10×(x•sin∠B)=4x,0≤x≤5.
②當(dāng)P點(diǎn)在CD上運(yùn)動(dòng)時(shí),如圖②所示,
y=$\frac{1}{2}$×10×4=20,5<x≤9.
③當(dāng)P在DA上運(yùn)動(dòng)時(shí),如圖③所示,
y=$\frac{1}{2}$×10×(14-x)sin∠B=-4x+56,9<x≤14.
綜上所得,函數(shù)的解析式為y=$\left\{\begin{array}{l}{4x,0≤x≤5}\\{20,5<x≤9}\\{-4x+56,9<x≤14}\end{array}\right.$;
(2)由(1)得,函數(shù)y=f(x)的圖象如圖,
由圖象可知,
當(dāng)∈[5,9]時(shí),f(x)max=20,
當(dāng)x=0或x=14時(shí),f(x)min=0,
所以函數(shù)y=f(x)的值域?yàn)閇0,20].

點(diǎn)評(píng) 本題主要考查了分段函數(shù)解析式的求法,函數(shù)圖象的作法,以及函數(shù)值域的求法,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知實(shí)數(shù)列{an}滿(mǎn)足|a1|=1,|an+1|=q|an|,n∈N+,常數(shù)q>1.對(duì)任意的n∈N+,有$\sum_{k=1}^{n+1}{|{a_k}|}≤4|{a_n}|$.設(shè)C為所有滿(mǎn)足上述條件的數(shù)列{an}的集合.
(1)求q的值;
(2)設(shè){an},{bn}∈C,m∈N+,且存在n0≤m,使${a_{n_0}}≠{b_{n_0}}$.證明:$\sum_{k=1}^m{|{a_k}|}≠\sum_{k=1}^m{|{b_k}|}$;
(3)設(shè)集合${A_m}=\left\{{\sum_{k=1}^m{a_k}\left|{\left\{{a_n}\right\}∈C}\right.}\right\}$,m∈N+,求Am中所有正數(shù)之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.某學(xué)校一個(gè)生物興趣小組對(duì)學(xué)校的人工湖中養(yǎng)殖的某種魚(yú)類(lèi)進(jìn)行觀測(cè)研究,在飼料充足的前提下,興趣小組對(duì)飼養(yǎng)時(shí)間x(單位:月)與這種魚(yú)類(lèi)的平均體重y(單位:千克)得到一組觀測(cè)值,如下表:
(1)在給出的坐標(biāo)系中,畫(huà)出關(guān)于x、y兩個(gè)相關(guān)變量的散點(diǎn)圖.
xi(月)12345
yi(千克)0.50.91.72.12.8
(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出變量y關(guān)于變量x的線(xiàn)性回歸直線(xiàn)方程$\hat y=\widehatbx+\hat a$.
(3)預(yù)測(cè)飼養(yǎng)滿(mǎn)12個(gè)月時(shí),這種魚(yú)的平均體重(單位:千克).
(參考公式:$b=\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x\overline y}}{{\sum_{i=1}^n{x_i^2}-n{{({\overline x})}^2}}}\hat$,$\hat a=\overline y-b\overline x$,$n{(\overline x)^2}=45$,$n\overline x\overline y=24$,$\sum_{i=1}^5{x_i}{y_i}=29.8$,$\sum_{i=1}^5{x_i^2}=55$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.在△OAB中,O為直角坐標(biāo)系的原點(diǎn),A,B的坐標(biāo)分別為A(3,4),B(-2,y),向量$\overrightarrow{AB}$與x軸平行,則向量$\overrightarrow{OA}$與$\overrightarrow{AB}$所成的余弦值是( 。
A.-$\frac{\sqrt{3}}{5}$B.$\frac{\sqrt{3}}{5}$C.-$\frac{3}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=xlnx和g(x)=m(x2-1)(m∈R)
(Ⅰ)m=1時(shí),求方程f(x)=g(x)的實(shí)根;
(Ⅱ)若對(duì)于任意的x∈(1,+∞),函數(shù)y=g(x)的圖象總在函數(shù)y=f(x)圖象的上方,求m的取值范圍;
(Ⅲ)求證:$\frac{4}{4×{1}^{2}-1}$+$\frac{4×2}{4×{2}^{2}-1}$+…+$\frac{4×n}{4×{n}^{2}-1}$>ln(2n+1)(n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.如圖,AB是半圓O的直徑,且AB=8,點(diǎn)C為半圓上的一點(diǎn).將此半圓沿BC所在的直線(xiàn)折疊,若圓弧BC恰好過(guò)圓心O,則圖中陰影部分的面積是$\frac{8π}{3}$.(結(jié)果保留π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖所示,ABCD是正方形,CC1⊥平面ABCD,且DD1∥BB1∥CC1,菱形AB1C1D1中,∠D1C1B1=α.
(1)求證:BD∥平面AB1C1D1
(2)若直線(xiàn)AC1與平面ABCD所成的角為θ,求證:cosθ=tan$\frac{α}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知雙曲線(xiàn)C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的離心率e=$\sqrt{5}$,點(diǎn)P1、P2分別是曲線(xiàn)C的兩條漸近線(xiàn)l1、l2上的兩點(diǎn),△OP1P2(O為坐標(biāo)原點(diǎn))的面積為9,點(diǎn)P是曲線(xiàn)C上的一點(diǎn),且$\overrightarrow{{P}_{1}P}$=2$\overrightarrow{P{P}_{2}}$.
(1)求此雙曲線(xiàn)的方程;
(2)設(shè)點(diǎn)M是此雙曲線(xiàn)C上的任意一點(diǎn),過(guò)點(diǎn)M分別作l1、l2的平行線(xiàn)交l2、l1于A、B兩點(diǎn),試證:平行四邊形OAMB的面積為定值.
(3)若點(diǎn)M是此雙曲線(xiàn)C上不同于實(shí)軸端點(diǎn)的任意一點(diǎn),設(shè)θ=∠F1MF2(F1、F2分別為雙曲線(xiàn)C的左、右焦點(diǎn)),且θ∈[$\frac{π}{4}$,$\frac{π}{3}$],試求|MF1|•|MF2|的變化范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知P是△ABC所在平面外的一點(diǎn),PA、PB、PC兩兩垂直,且P在△ABC所在平面內(nèi)的射影H在△ABC內(nèi),則H一定是△ABC的垂心.

查看答案和解析>>

同步練習(xí)冊(cè)答案