4.設(shè)函數(shù)f(x)=$\frac{ln({x}^{2}+3x-4)}{x-2}$,求f(x)的定義域.

分析 直接由對數(shù)的真數(shù)大于0且分式的分母不等于0,求解即可得答案.

解答 解:由$\left\{\begin{array}{l}{{x}^{2}+3x-4>0}\\{x-2≠0}\end{array}\right.$,解得x<-4或x>1且x≠2,
∴函數(shù)f(x)=$\frac{ln({x}^{2}+3x-4)}{x-2}$的定義域是{x|x<-4或x>1且x≠2}.

點評 本題考查了函數(shù)的定義域及其求法,考查了對數(shù)函數(shù)的性質(zhì),是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在四棱錐P-ABCD中,已知DC∥AB,DC=2AB,E為棱PD的中點.
(1)求證:AE∥平面PBC;
(2)若PB⊥PC,PB⊥AB,求證:平面PAB⊥平面PCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.為了解某單位員工的月工資水平,從該單位500位員工中隨機(jī)抽取了50位進(jìn)行調(diào)查,得到如下頻數(shù)分布表和頻率分布直方圖:
月工資
(單位:百元)
[15,25)[25,35)[35,45)[45,55)[55,65)[65,75)
男員工數(shù)1810644
女員工數(shù)425411
(1)試由圖估計該單位員工月平均工資;
(2)現(xiàn)用分層抽樣的方法從月工資在[45,55)和[55,65)的兩組所調(diào)查的男員工中隨機(jī)選取5人,問各應(yīng)抽取多少人?
(3)若從月工資在[25,35)和[45,55)兩組所調(diào)查的女員工中隨機(jī)選取2人,試求這2人月工資差不超過1000元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知{an}是等比數(shù)列,那么下列結(jié)論錯誤的是( 。
A.${a_5}^2={a_3}•{a_7}$B.${a_5}^2={a_1}•{a_9}$
C.${a_n}^2={a_{n-1}}•{a_{n+1}}({n∈{N^*}})$D.${a_n}^2={a_{n-k}}•{a_{n+k}}({k∈{N^*},n>k>0})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.國內(nèi)某汽車品牌一個月內(nèi)被消費者投訴的次數(shù)用X表示,據(jù)統(tǒng)計,隨機(jī)變量X的概率分布如下:
 X 0 2
 P 0.10.3  2a
(1)求a的值;
(2)假設(shè)一月份與二月份被消費者投訴的次數(shù)互不影響,求該汽車品牌在這兩個月內(nèi)共被消費者投訴2次的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)函數(shù)f(x)(x∈R)為奇函數(shù),f(1)=$\frac{1}{2}$,f(x+2)=f(x)+f(2),則f(-5)=(  )
A.-$\frac{5}{2}$B.$\frac{3}{2}$C.$\frac{5}{2}$D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.下面是被嚴(yán)重破壞的頻率分布表和頻率分布直方圖,根據(jù)殘表和殘圖,則 p=30,q=0.1.
分?jǐn)?shù)段 頻數(shù) 
[60,70) p 
[70,80)90  
[80,90) 60 
[90,100] 20 q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.一張坐標(biāo)紙上涂著圓E:(x+1)2+y2=8及點P(1,0),折疊此紙片,使P與圓周上某點P'重合,每次折疊都會留下折痕,設(shè)折痕與EP'的交點為M.
(1)求M的軌跡C的方程;
(2)直線l:y=kx+m與C的兩個不同交點為A,B,且l與以EP為直徑的圓相切,若$\overrightarrow{OA}•\overrightarrow{OB}∈[{\frac{2}{3},\frac{3}{4}}]$,求△ABO的面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知函數(shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x∈(-∞,0)時,f(x)-xf′(x)<0,若m=$\frac{f(\sqrt{3})}{\sqrt{3}}$,n=$\frac{f(ln\frac{1}{2})}{ln\frac{1}{2}}$,k=$\frac{f(lo{g}_{2}5)}{lo{g}_{2}5}$,則m,n,k的大小關(guān)系是n<m<k(用“<”連接).

查看答案和解析>>

同步練習(xí)冊答案