雙曲線
y2
4
-
x2
2
=1
的離心率為
 
考點(diǎn):雙曲線的簡(jiǎn)單性質(zhì)
專(zhuān)題:圓錐曲線的定義、性質(zhì)與方程
分析:利用雙曲線的簡(jiǎn)單性質(zhì)直接求解.
解答: 解:∵雙曲線
y2
4
-
x2
2
=1
,
∴a=2,c=
4+2
=
6
,
∴e=
c
a
=
6
2

故答案為:
6
2
點(diǎn)評(píng):本題考查雙曲線的離心率的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意雙曲線性質(zhì)的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知tanα=
4
3
,且α為第一象限角,則sin(π+α)+cos(π-α)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C所對(duì)的邊分別是a,b,c,已知c=1,C=
π
6

(Ⅰ)若a=
3
,求b的值;
(Ⅱ)求cosAcosB的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知三角形ABC,AB=2,AC=
2
BC
,那么三角形ABC面積的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F1、F2是橢圓
x2
m2+1
+
y2
2m
=1
的兩個(gè)焦點(diǎn),且在此橢圓上使△F1PF2為直角三角形的點(diǎn)P共有8個(gè),則m的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
arcsinx
2x+2-x
的最大和最小值分別是M和m,則M+m=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足:當(dāng)n∈(
(k-1)k
2
k(k+1)
2
]
(n,k∈N*)時(shí),an=(-1)k+1•k,Sn是數(shù)列{an}的前n項(xiàng)和,定義集合Tm={n|Sn是an的整數(shù)倍,n,m∈N*,且1≤n≤m},card(A)表示集合A中元素的個(gè)數(shù),則 a15=
 
,card(T15)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

橢圓
x2
m
+
y2
6
=1
的焦距為2,則m的取值是( 。
A、7B、5C、5或7D、10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)復(fù)數(shù)z=
2+i
2i-1
(i為虛數(shù)單位)的共軛復(fù)數(shù)是( 。
A、-i
B、i
C、
5
3
i
D、-
5
3
i

查看答案和解析>>

同步練習(xí)冊(cè)答案