已知橢圓C1=1(a>b>0)和圓C2:x2+y2=r2(r>0)都過(guò)點(diǎn)P(-1,0),且橢圓C1離心率為,過(guò)點(diǎn)P作斜率為k1,k2的直線分別交橢圓C1、圓C2于點(diǎn)A、B、C、D(如圖),k1=2k2
(1)求橢圓C1和圓C2的方程;
(2)求證:直線BC恒過(guò)定點(diǎn).

【答案】分析:(1)直接把定點(diǎn)代入圓的方程求圓的半徑,利用橢圓過(guò)定點(diǎn)得到a的值,代入離心率后求得c的值,結(jié)合b2=a2-c2求得b的值,則圓與橢圓的方程可求;
(2)設(shè)出直線AB和CD的方程,分別和圓與橢圓聯(lián)立后求出A,B,C,D的坐標(biāo),求出BC的斜率(用k2)表示,由點(diǎn)斜式寫出直線BC的方程后可得直線BC恒過(guò)定點(diǎn).
解答:(1)解:由圓C2:x2+y2=r2(r>0)過(guò)點(diǎn)P(-1,0),得到r2=1,
所以圓C2的方程為x2+y2=1.
由橢圓C1離心率為=,
由橢圓C1=1(a>b>0)過(guò)點(diǎn)P(-1,0),得
所以a=1,代入,得c=,
所以
所以橢圓C1的方程為x2+2y2=1;
(2)證明:由題意可設(shè)直線AB的方程為y=k1(x+1),直線CD的方程為y=k2(x+1).


同理可得:,
所以,因?yàn)閗1=2k2,所以,
所以直線BC的方程為
,恒過(guò)定點(diǎn)(1,0).
點(diǎn)評(píng):本題考查了圓與橢圓的標(biāo)準(zhǔn)方程,考查了直線與圓錐曲線的關(guān)系,直線與圓錐曲線的關(guān)系問(wèn)題,往往需要涉及繁雜的計(jì)算,這就需要學(xué)生有較強(qiáng)的運(yùn)算能力,屬難題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C1=1,拋物線C2:(y-m)2=2px(p>0),且C1C2的公共弦AB過(guò)橢圓C1的右焦點(diǎn).

(1)當(dāng)ABx軸時(shí),求mp的值,并判斷拋物線C2的焦點(diǎn)是否在直線AB上;

(2)若p=且拋物線C2的焦點(diǎn)在直線AB上,求m的值及直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年浙江省寧波市慈溪中學(xué)高三(上)第一次月考數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

已知橢圓C1=1 (a>b>0)與雙曲線C2:x2-=1 有公共的焦點(diǎn),C2的一條漸近線與以C1的長(zhǎng)軸為直徑的圓相交于A,B兩點(diǎn).若C1恰好將線段AB三等分,則( )
A.a(chǎn)2=
B.a(chǎn)2=3
C.b2=
D.b2=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年遼寧省本溪一中、莊河高中聯(lián)考高三(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知橢圓C1+=1(a>b>0)的長(zhǎng)軸長(zhǎng)為4,離心率為,F(xiàn)1、F2分別為其左右焦點(diǎn).一動(dòng)圓過(guò)點(diǎn)F2,且與直線x=-1相切.
(Ⅰ)(。┣髾E圓C1的方程; (ⅱ)求動(dòng)圓圓心C軌跡的方程;
(Ⅱ)在曲線上C有兩點(diǎn)M、N,橢圓C1上有兩點(diǎn)P、Q,滿足MF2共線,共線,且=0,求四邊形PMQN面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年吉林省長(zhǎng)春十一高高二(下)期初數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知橢圓C1=1(a>b>0)的左、右焦點(diǎn)分別為F1、F2,其中F2也是拋物線C2:y2=4x的焦點(diǎn),M是C1與C2在第一象限的交點(diǎn),且
(I)求橢圓C1的方程;   
(Ⅱ)已知菱形ABCD的頂點(diǎn)A、C在橢圓C1上,頂點(diǎn)B、D在直線7x-7y+1=0上,求直線AC的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年廣東省中山一中等六校聯(lián)考高三(上)12月月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知橢圓C1+=1(a>b>0)的離心率為,直線l:x-y+=0與橢圓C1相切.
(1)求橢圓C1的方程;
(2)設(shè)橢圓C1的左焦點(diǎn)為F1,右焦點(diǎn)為F2,直線l1過(guò)點(diǎn)F1且垂直與橢圓的長(zhǎng)軸,動(dòng)直線l2垂直于直線l1于點(diǎn)P,線段PF2的垂直平分線交l2于點(diǎn)M,求點(diǎn)M的軌跡C2的方程;
(3)若A(x1,2),B(x2,y2),C(x,y)是C2上不同的點(diǎn),且AB⊥BC,求實(shí)數(shù)y的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案