在△ABC中,A、B、C的對(duì)邊分別是a,b,c,且bcosB是acosC,ccosA的等差中項(xiàng),則角B=
 
考點(diǎn):等差數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列,解三角形
分析:由題意可得2bcosB=acosC+ccosA,結(jié)合正弦定理和三角函數(shù)公式可得cosB=
1
2
,由三角形內(nèi)角的范圍可得B值.
解答: 解:∵bcosB是acosC,ccosA的等差中項(xiàng),
∴2bcosB=acosC+ccosA,
由正弦定理可得2sinBcosB=sinAcosC+sinCcosA,
即2sinBcosB=sin(A+C)=sinB,
又∵sinB>0,上式兩邊同除以sinB可得cosB=
1
2
,
∵0<B<π,∴B=
π
3

故答案為:
π
3
點(diǎn)評(píng):本題考查等差數(shù)列的性質(zhì)和解三角形,屬中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

節(jié)日期間,高速公路車輛較多,某調(diào)查公司在一服務(wù)區(qū)從七座以下小型汽車中按進(jìn)服務(wù)區(qū)的順序,隨機(jī)抽取第一輛汽車后,每間隔50輛就抽取一輛的抽樣方法抽取40名駕駛員進(jìn)行詢問調(diào)查,將他們?cè)谀扯胃咚俟返能囁伲╧m/h)分成六段[80,85),[85,90),[90,95),[95,100),[100,105),[105,110)后得到如下圖的頻率分布直方圖.
(Ⅰ)請(qǐng)直接回答這種抽樣方法是什么抽樣方法?并估計(jì)出這40輛車速的中位數(shù);
(Ⅱ)設(shè)車速在[80,85)的車輛為A1,A2,…,An(m為車速在[80,85)上的頻數(shù)),車速在[85,90)的車輛為B1,B2,…,Bn(n為車速在[85,90)上的頻數(shù)),從車速在[80,90)的車輛中任意抽取2輛共有幾種情況?請(qǐng)列舉出所有的情況,并求抽取的2輛車的車速都在[85,90)上的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在圓O:x2+y2=4上任取一點(diǎn)P,過點(diǎn)P作x軸的垂線段PD,D為垂足.設(shè)M為線段PD的中點(diǎn).
(Ⅰ)當(dāng)點(diǎn)P在圓O上運(yùn)動(dòng)時(shí),求點(diǎn)M的軌跡E的方程;
(Ⅱ)若圓O在點(diǎn)P處的切線與x軸交于點(diǎn)N,試判斷直線MN與軌跡E的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等比數(shù)列{an}中,a3=-1,a7=-4,則a3和a7的等比中項(xiàng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

先將函數(shù)f(x)=2sinxcosx的圖象向左平移
π
4
個(gè)長(zhǎng)度單位,再保持所有點(diǎn)的縱坐標(biāo)不變橫坐標(biāo)壓縮為原來的
1
2
,得到函數(shù)g(x)的圖象,則g(x)解析式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

lim
n→∞
1+2+3+…+n
n2
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U=R,集合A={x|x2-2x-3>0,x∈R},B={x|m-2≤x≤m+2},若(∁UA)∩B={x|0≤x≤3},則實(shí)數(shù)m的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知方程x1+x2+x3+x4=20,則這個(gè)方程的正整數(shù)解的組數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:方程
x2
2m
+
y2
9-m
=1表示焦點(diǎn)在y軸上的橢圓,命題q:雙曲線
y2
5
-
x2
m
=1的離心率e∈(
6
2
2
),若命題p、q中有且只有一個(gè)為真命題,則實(shí)數(shù)m的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案