7.函數(shù)f(x)=$\sqrt{lnx-1}$+$\sqrt{x(3-x)}$定義域為[e,3].

分析 二次根式被開放式非負和對數(shù)函數(shù)的定義域,可得lnx≥1,且x(x-3)≤0,二次不等式的解法,即可得到所求定義域.

解答 解:f(x)=$\sqrt{lnx-1}$+$\sqrt{x(3-x)}$有意義,
可得lnx-1≥0,且x(3-x)≥0,
即為lnx≥1,且x(x-3)≤0,
即有x≥e,且0≤x≤3,
可得e≤x≤3.
則定義域為[e,3].
故答案為:[e,3].

點評 本題考查函數(shù)的定義域的求法,注意運用二次根式被開放式非負和對數(shù)函數(shù)的定義域,以及二次不等式的解法,考查運算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

17.設集合A={1,2,3},B={2,4,6},則A∩B=( 。
A.2B.{2}C.{2,3,4}D.{1,2,3,4,6}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.設函數(shù)f(x)=ex-x.
(1)若函數(shù)F(x)=f(x)-ax2-1的導函數(shù)F′(x)在[0,+∞)上單調遞增,求實數(shù)a的取值范圍;
(2)求證:f($\frac{1}{2}$)+f($\frac{1}{3}$)+f($\frac{1}{4}$)+…+f($\frac{1}{n+1}$)>n+$\frac{n}{4(n+2)}$,n∈N*

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.在△ABC中,a,b,c分別是三個內角A,B,C的對邊,b=1,c=$\sqrt{3}$,∠B=30°,則a的值為( 。
A.1或2B.1C.2D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知數(shù)列{an}的前n項和Sn滿足Sn=$\frac{3}{2}$n2+$\frac{7}{2}$n(n∈N*),數(shù)列{bn}是首項為4的正項等比數(shù)列,且2b2,b3-3,b2+2成等差數(shù)列.
(Ⅰ)求數(shù)列{an},{bn}的通項公式;
(Ⅱ)令cn=an•bn(n∈N*),求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知a,b,c∈(0,+∞) 且 a≥b≥c,a+b+c=12,ab+bc+ca=45,則a的最小值為( 。
A.5B.10C.15D.20

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.某海濱浴場的海浪高度y(米)是時間t(0≤t≤24),單位:小時)的函數(shù),記為y=f(x),下表是某日各時的浪高數(shù)據(jù):
t時03691215182124
y米1.51.00.50.981.51.010.50.991.5
經(jīng)長期觀察,y=f(t)的曲線可以近似地看出是函數(shù)y=Acos(ωt)+k(A>0)的曲線.浴場規(guī)定:當海浪高度高于1米時才對沖浪愛好者開放,根據(jù)以上數(shù)據(jù),當天上午8:00時至晚上20:00時之間可供沖浪愛好者沖浪的時間約為多少時?( 。
A.10小時B.8小時C.6小時D.4小時

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知拋物線C:x2=2py(p>0)的焦點F,拋物線上一點A的橫坐標為x1(x1>0),過點A作拋物線的切線交x軸于點D,交y軸于點Q,交直線l:y=$\frac{p}{2}$于點M,|FD|=2,∠AFD=60°.
(1)求證:△AFQ為等腰三角形,并求拋物線C的方程;
(2)求△DFM的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.在極坐標系中,過點(1,0)并且與極軸垂直的直線方程是( 。
A.ρcosθ=1B.ρsinθ=1C.ρ=cosθD.ρ=sinθ

查看答案和解析>>

同步練習冊答案