(本題12分)如圖,設(shè)P是圓x2+y2=25上的動點(diǎn),點(diǎn)D是P在x軸上的投影,M為PD上一點(diǎn),且|MD|=|PD|.
(Ⅰ)當(dāng)P在圓上運(yùn)動時,求點(diǎn)M的軌跡C的方程;
(Ⅱ)求過點(diǎn)(3,0)且斜率為的直線被曲線C所截線段的長度.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
過點(diǎn)的圓C與直線相切于點(diǎn).
(1)求圓C的方程;
(2)已知點(diǎn)的坐標(biāo)為,設(shè)分別是直線和圓上的動點(diǎn),求的最小值.
(3)在圓C上是否存在兩點(diǎn)關(guān)于直線對稱,且以為直徑的圓經(jīng)過原點(diǎn)?若存在,寫出直線的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分10分)
如圖:、是單位圓上的點(diǎn),是圓與軸正半軸的交點(diǎn),三角形為正三角形, 且AB∥軸.
(1)求的三個三角函數(shù)值;
(2)求及.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分16分,第1小題4分,第2小題6分,第3小題6分)
設(shè)橢圓的中心為原點(diǎn)O,長軸在x軸上,上頂點(diǎn)為A,左、右焦點(diǎn)分別為F1、F2,線段OF1、OF2的中點(diǎn)分別為B1、B2,且△AB1B2是面積為的直角三角形.過B1作直線l交橢圓于P、Q兩點(diǎn).
(1) 求該橢圓的標(biāo)準(zhǔn)方程;
(2) 若,求直線l的方程;
(3) 設(shè)直線l與圓O:x2+y2=8相交于M、N兩點(diǎn),令|MN|的長度為t,若t∈,求△B2PQ的面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)
已知關(guān)于的方程:.
(1)當(dāng)為何值時,方程C表示圓。
(2)若圓C與直線相交于M,N兩點(diǎn),且|MN|=,求的值。
(3)在(2)條件下,是否存在直線,使得圓上有四點(diǎn)到直線的距離為,若存在,求出的范圍,若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分10分)已知線段的端點(diǎn)的坐標(biāo)為,端點(diǎn)在
圓:上運(yùn)動。
(1)求線段的中點(diǎn)的軌跡方程;
(2)過點(diǎn)的直線與圓有兩個交點(diǎn),弦的長為,求直線的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)平面直角坐標(biāo)系中,設(shè)二次函數(shù)的圖象與兩坐標(biāo)軸有三個交點(diǎn),經(jīng)過這三個交點(diǎn)的圓記為C.求:
(Ⅰ)求實數(shù)b 的取值范圍;
(Ⅱ)求圓C 的方程;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
過點(diǎn)Q 作圓C:的切線,切點(diǎn)為D,且QD=4
(1)求的值
(2)設(shè)P是圓C上位于第一象限內(nèi)的任意一點(diǎn),過點(diǎn)P作圓C的切線l,且l交x軸于點(diǎn)A,交y 軸于點(diǎn)B,設(shè),求的最小值(O為坐標(biāo)原點(diǎn))
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com