【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且滿足csinA=acosC
(1)求角C大小;
(2)求 sinA﹣cos(B+ )的最大值,并求取得最大值時(shí)角A,B的大。
【答案】
(1)解:由正弦定理得 sinCsinA=sinAcosC,
因?yàn)?<A<π,所以sinA>0.從而sinC=cosC,
又cosC≠0,所以tanC=1,C=
(2)解:有(1)知,B= ﹣A,于是
sinA﹣cos(B+ )= sinA+cosA
=2sin(A+ ).
因?yàn)?<A< ,所以 <A+ < ,
從而當(dāng)A+ = ,即A= 時(shí)
2sin(A+ )取得最大值2.
綜上所述 sinA﹣cos(B+ )的最大值為2,此時(shí)A= ,B=
【解析】(1)利用正弦定理化簡(jiǎn)csinA=acosC.求出tanC=1,得到C= .(2)B= ﹣A,化簡(jiǎn) sinA﹣cos(B+ ),通過0<A< ,推出 <A+ < ,求出2sin(A+ )取得最大值2.得到A,B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的偶函數(shù)f(x)滿足:對(duì)任意的x1 , x2∈(﹣∞,0),有 ,則( )
A.f(﹣4)<f(3)<f(﹣2)
B.f(﹣2)<f(3)<f(﹣4)
C.f(3)<f(﹣2)<f(﹣4)
D.f(﹣4)<f(﹣2)<f(3)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= sin xcos x+cos2x+a;則f(x)的最小正周期為 , 若f(x)在區(qū)間[﹣ , ]上的最大值與最小值的和為 ,則實(shí)數(shù)a的值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)=|x﹣1|+|x+1|,(x∈R)
(1)求證:f(x)≥2;
(2)若不等式f(x)≥ 對(duì)任意非零實(shí)數(shù)b恒成立,求x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)Sn是數(shù)列{an}的前n項(xiàng)和,且a1=﹣1, =Sn , 求數(shù)列{an}的前n項(xiàng)和Sn= , 通項(xiàng)公式an= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C經(jīng)過A(﹣2,1),B(5,0)兩點(diǎn),且圓心C在直線y=2x上.
(1)求圓C的方程;
(2)動(dòng)直線l:(m+2)x+(2m+1)y﹣7m﹣8=0過定點(diǎn)M,斜率為1的直線m過點(diǎn)M,直線m和圓C相交于P,Q兩點(diǎn),求PQ的長度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)等差數(shù)列{an}的前n項(xiàng)和為S,a2+a6=20,S5=40.
(1)求{an}的通項(xiàng)公式;
(2)設(shè)等比數(shù)列{bn}滿足b2=a3 , b3=a7.若b6=ak , 求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的各項(xiàng)均為正數(shù),滿足a1=1,ak+1﹣ak=ai . (i≤k,k=1,2,3,…,n﹣1)
(1)求證: ;
(2)若{an}是等比數(shù)列,求數(shù)列{an}的通項(xiàng)公式;
(3)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列滿足: , .
()求, , 的值.
()求證:數(shù)列是等比數(shù)列.
()令,如果對(duì)任意,都有,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com