設(shè)函數(shù)f(x)=x3+mx2+nx+p在(-∞,0]上是增函數(shù),在[0,2]上是減函數(shù),x=2是方程f(x)=0的一個(gè)根.
(1)求n的值;
(2)求證:f(1)≥2.
(1)f′(x)=3x2+2mx+n.
∵f(x)在(-∞,0]上是增函數(shù),在[0,2]上是減函數(shù)
∴當(dāng)x=0時(shí),f(x)取到極大值.
∴f′(0)=0.
∴n=0.
(2)∵f(2)=0
∴p=-4(m+2)
f′(x)=3x2+2mx=0的兩個(gè)根分別為x1=0,x2=-
2m
3

∵函數(shù)f(x)在[0,2]上是減函數(shù),
∴x2=-
2m
3
≥2
∴m≤-3.
∴f(1)=m+p+1=m-4(m+2)+1=-7-3m≥2.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

18、設(shè)函數(shù)f(x)=x3-3ax2+3bx的圖象與直線12x+y-1=0相切于點(diǎn)(1,-11).
(Ⅰ)求a,b的值;
(Ⅱ)討論函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=x3+ax2+x+1,a∈R.
(1)若x=1時(shí),函數(shù)f(x)取得極值,求函數(shù)f(x)的圖象在x=-1處的切線方程;
(2)若函數(shù)f(x)在區(qū)間(
12
,1)
內(nèi)不單調(diào),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=x3+ax2-a2x+5(a>0)
(1)當(dāng)函數(shù)f(x)有兩個(gè)零點(diǎn)時(shí),求a的值;
(2)若a∈[3,6],當(dāng)x∈[-4,4]時(shí),求函數(shù)f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=x3-3x2-9x-1.求:
(Ⅰ)函數(shù)在(1,f(1))處的切線方程;
(Ⅱ)函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=x3•cosx+1,若f(a)=5,則f(-a)=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案