分析 由三視圖可知,該多面體是底面為直角三角形的直三棱柱ADE-BCF,且底面是一個直角三角形,由三視圖中所標數(shù)據易計算出三棱柱中各棱長的值.
(1)取BF的中點G,連接MG、NG,利用中位線的性質結合線面平行的充要條件,易證明結論;
(2)利用所給數(shù)據即可求多面體的體積及表面積.
解答 (1)證明:由三視圖知,該多面體是底面為直角三角形的直三棱柱ADE-BCF,且AB=BC=BF=4,DE=CF=$4\sqrt{2}$,∠CBF=90°
取BF的中點G,連接MG、NG,
由M,N分別為AF,BC的中點可得,NG∥CF,MG∥EF,
∴平面MNG∥平面CDEF,又MN?平面MNG,
∴MN∥平面CDEF.
(2)S=(4+4+4$\sqrt{2}$)×4+2×$\frac{1}{2}×4×4$=48+16$\sqrt{2}$,
V=$\frac{1}{2}×4×4×4$=32.
點評 本題考查的知識點是簡單空間圖形有三視圖、棱錐的體積及直線與平面平行的判定.根據三視圖判斷幾何體的形狀及線面之間的位置關系及長度(面積)大小是解答的關鍵.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 27 | B. | 81 | C. | 243 | D. | 729 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充分必要條件 | B. | 充分不必要條件 | ||
C. | 必要不充分條件 | D. | 不充分不必要條件 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com