9.一個多面體的直觀圖及三視圖如圖1,2所示,其中 M,N 分別是 AF、BC 的中點.
(1)求證:MN∥平面 CDEF;
(2)求多面體的體積及表面積.

分析 由三視圖可知,該多面體是底面為直角三角形的直三棱柱ADE-BCF,且底面是一個直角三角形,由三視圖中所標數(shù)據(jù)易計算出三棱柱中各棱長的值.
(1)取BF的中點G,連接MG、NG,利用中位線的性質結合線面平行的充要條件,易證明結論;
(2)利用所給數(shù)據(jù)即可求多面體的體積及表面積.

解答 (1)證明:由三視圖知,該多面體是底面為直角三角形的直三棱柱ADE-BCF,且AB=BC=BF=4,DE=CF=$4\sqrt{2}$,∠CBF=90°
取BF的中點G,連接MG、NG,
由M,N分別為AF,BC的中點可得,NG∥CF,MG∥EF,
∴平面MNG∥平面CDEF,又MN?平面MNG,
∴MN∥平面CDEF.
(2)S=(4+4+4$\sqrt{2}$)×4+2×$\frac{1}{2}×4×4$=48+16$\sqrt{2}$,
V=$\frac{1}{2}×4×4×4$=32.

點評 本題考查的知識點是簡單空間圖形有三視圖、棱錐的體積及直線與平面平行的判定.根據(jù)三視圖判斷幾何體的形狀及線面之間的位置關系及長度(面積)大小是解答的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

11.已知集合A={x||2x-1|≤3},集合B={x|x2+(4-a)x-4a>0},若A∩B=A,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.若直線l經(jīng)過點A(2,-3)和B(-1,3),則直線l的斜率是( 。
A.-2B.$-\frac{1}{2}$C.0D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.設等比數(shù)列{an}的前n項和為Sn=4(a1+a3+…+a2n-1),a1a2a3=27,則a6=( 。
A.27B.81C.243D.729

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.在△ABC中,角A、B、C所對應的邊分別為a、b、c,則“A≤B”是sinA≤sinB的( 。
A.充分必要條件B.充分不必要條件
C.必要不充分條件D.不充分不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.在三角形ABC中,AB=2,AC=4,P是三角形ABC的外心,數(shù)量積$\overrightarrow{AP}•\overrightarrow{BC}$等于6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知$sinx+cosy=\frac{1}{3}$,則cosy+sin2x-1的最大值為$\frac{4}{9}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.一個玻璃瓶中裝有大小相等質地均勻顏色各不相同的玻璃小球共3個,現(xiàn)隨機的倒出小球(至少倒出一個),倒后重新將倒出小球裝回原瓶中,進行下一次操作.現(xiàn)通過倒玻璃球走跳棋游戲,規(guī)則如下:棋盤上標有第0站,第1站,第2站…一枚棋子開始停在第0站,棋手將玻璃瓶中的小球倒出,若倒出的小球是奇數(shù)個,將棋子向前走一步;若倒出的小球是偶數(shù)個,則將棋子向前走兩步.然后將倒出的小球裝回原玻璃瓶,準備下一次操作.設棋子跳到第n站(n∈N*)的概率為Pn,已知P0=1.
(1)求倒出的小球是奇數(shù)個的概率;
(2)求P1、P2
(3)證明:數(shù)列$\{{P_n}-{P_{n-1}}\},n∈{N^*}$是等比數(shù)列,并求Pn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知某商場新進3000袋奶粉,為檢查其三聚氰胺是否超標,現(xiàn)采用系統(tǒng)抽樣的方法從中抽取200袋檢查,若第一組抽出的號碼是7,則第四十一組抽出的號碼為607.

查看答案和解析>>

同步練習冊答案