【題目】已知在上任意一點處的切線為,若過右焦點的直線交橢圓:于、兩點,在點處切線相交于.
(1)求點的軌跡方程;
(2)若過點且與直線垂直的直線(斜率存在且不為零)交橢圓于兩點,證明:為定值.
【答案】(1);(2)詳見解析.
【解析】
(1)由題意按照直線斜率是否為0分類,當直線斜率不為0時,設(shè)直線方程為,,聯(lián)立方程求出點橫坐標,化簡即可得解;
(2)設(shè)點、,設(shè)直線的方程為,聯(lián)立方程結(jié)合韋達定理、弦長公式可得,同理可得,即可得解.
(1)由題意點,
當直線斜率為0時,在點處的切線不相交,不合題意;
當直線斜率不為0時,設(shè)直線方程為,,
易得在點處切線為,在點處切線為,
由,解得,
又,
所以,
所以點的軌跡方程為;
(2)設(shè)點、,設(shè)直線的方程為.
則,消去得,,
由韋達定理得,.
所以
;
將換為可得,
所以.
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(Ⅰ)求的普通方程和的直角坐標方程;
(Ⅱ)若與交于,兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某種植園在芒果臨近成熟時,隨機從一些芒果樹上摘下100個芒果,其質(zhì)量(單位:克)分別在[100,150),[150,200),[200,250),[250,300),[300,350),[350,400]中,經(jīng)統(tǒng)計得頻率分布直方圖如圖所示.
(1)現(xiàn)按分層抽樣的方法從質(zhì)量為[250,300),[300,350)內(nèi)的芒果中隨機抽取6個,再從這6個中隨機抽取3個,求這3個芒果中恰有1個在[300,350)內(nèi)的概率;
(2)某經(jīng)銷商來收購芒果,以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均值,用樣本估計總體,該種植園中還未摘下的芒果大約還有10 000個,經(jīng)銷商提出如下兩種收購方案:A方案:所有芒果以10元/千克收購;B方案:對質(zhì)量低于250克的芒果以2元/個收購,高于或等于250克的以3元/個收購.通過計算確定種植園選擇哪種方案獲利更多?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)寫出曲線的普通方程和曲線的直角坐標方程;
(2)已知點是曲線上的動點,求點到曲線的最小距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C:(a>b>0)的焦距為2,且過點.
(1)求橢圓C的方程;
(2)已知△BMN是橢圓C的內(nèi)接三角形,若坐標原點O為△BMN的重心,求點O到直線MN距離的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的對稱中心為原點,焦點在軸上,焦距為,點在該橢圓上.
(1)求橢圓的方程;
(2)直線與橢圓交于兩點,點位于第一象限,是橢圓上位于直線兩側(cè)的動點.當點運動時,滿足,問直線的斜率是否為定值,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】圓周率π是數(shù)學中一個非常重要的數(shù),歷史上許多中外數(shù)學家利用各種辦法對π進行了估算.現(xiàn)利用下列實驗我們也可對圓周率進行估算.假設(shè)某校共有學生N人,讓每人隨機寫出一對小于1的正實數(shù)a,b,再統(tǒng)計出a,b,1能構(gòu)造銳角三角形的人數(shù)M,利用所學的有關(guān)知識,則可估計出π的值是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】劉徽(約公元225年—295年),魏晉期間偉大的數(shù)學家,中國古典數(shù)學理論的奠基人之一.他在割圓術(shù)中提出的“割之彌細,所失彌少,割之又割,以至于不可割,則與圓周合體,而無所失矣”.這可視為中國古代極限觀念的佳作.割圓術(shù)的核心思想是將一個圓的內(nèi)接正邊形等分成個等腰三角形(如圖所示),當變得很大時,這個等腰三角形的面積之和近似等于圓的面積.運用割圓術(shù)的思想,估計的值為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),是f(x)的導(dǎo)函數(shù).
(1)證明:當x>0時,f(x)>0;
(2)證明:在()上有且只有3個零點.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com