17.運行如圖所示的程序框圖,若輸出的結(jié)果為$\frac{5}{11}$,則判斷框內(nèi)可以填( 。
A.k>8?B.k≥9?C.k≥10?D.k>11?

分析 模擬執(zhí)行程序框圖,依次寫出每次循環(huán)得到的S,k的值,當k=11時,由題意,此時滿足條件,退出循環(huán),輸出S的值為$\frac{5}{11}$,則可得判斷框中應該填的條件.

解答 解:模擬程序的運行,可得
s=0,k=1
不滿足條件,執(zhí)行循環(huán)體,s=$\frac{1}{1×3}$,k=3
不滿足條件,執(zhí)行循環(huán)體,s=$\frac{1}{1×3}$+$\frac{1}{3×5}$,k=5

不滿足條件,執(zhí)行循環(huán)體,s=$\frac{1}{1×3}$+$\frac{1}{3×5}$+$\frac{1}{5×7}$+…+$\frac{1}{9×11}$=$\frac{1}{2}$[(1-$\frac{1}{3}$)+($\frac{1}{3}$-$\frac{1}{5}$)+…+($\frac{1}{9}$-$\frac{1}{11}$)]=$\frac{1}{2}×$(1-$\frac{1}{11}$)=$\frac{5}{11}$,k=11
由題意,此時應該滿足條件,退出循環(huán),輸出s的值為$\frac{5}{11}$,
則判斷框內(nèi)可以填k≥10?.
故選:C.

點評 本題主要考查程序框圖的識別和運行,根據(jù)條件進行模擬運算是解決本題的關鍵,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

7.已知函數(shù)f(x)=$\frac{1}{2}$x2+$\frac{x}$+c(b,c是常數(shù))和g(x)=$\frac{1}{4}$x+$\frac{1}{x}$都是定義在M={x|1≤x≤4}上的函數(shù),對于任意的x∈M,存在x0∈M,使得f(x)≥f(x0)且g(x)≥g(x0)且f(x0)=g(x0),求f(x)在集合M上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.關于下列命題,正確的個數(shù)是(  )
(1)若點(2,1)在圓x2+y2+kx+2y+k2-15=0外,則k>2或k<-4
(2)已知圓M:(x+cosθ)2+(y-sinθ)2=1,直線y=kx,則直線與圓恒相切
(3)已知點P是直線2x+y+4=0上一動點,PA、PB是圓C:x2+y2-2y=0的兩條切線,A、B是切點,則四邊形PACB的最小面積是為2
(4)設直線系M:xcosθ+ysinθ=2+2cosθ,M中的直線所能圍成的正三角形面積都等于12$\sqrt{3}$.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.我國古代數(shù)學名著《數(shù)書九章》有“米谷粒分”題:糧倉開倉收糧,有人送來米1524石,驗得米內(nèi)夾谷,抽樣取米一把,數(shù)得254粒內(nèi)夾谷28粒,則這批米內(nèi)夾谷約為( 。
A.1365石B.338石C.168石D.134石

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.某制造廠商10月份生產(chǎn)了一批乒乓球,從中隨機抽取n個進行檢查,測得每個球的直徑(單位:mm),將數(shù)據(jù)進行分組,得到如表頻率分布表:
 分組 頻數(shù) 頻率
[39.95,39.97) 6 P1
[39.97,39.99) 12 0.20
[39.99,40.01) a 0.50
[40.01,40.03) b P2
 合計 n 1.00
(1)求a、b、n及P1、P2的值,并畫出頻率分布直方圖(結(jié)果保留兩位小數(shù));
(2)已知標準乒乓球的直徑為40.00mm,直徑誤差不超過0.01mm的為五星乒乓球,若這批乒乓球共有10000個,試估計其中五星乒乓球的數(shù)目;
(3)統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點值(例如區(qū)間[39.99,40.01)的中點值是40.00)作為代表,估計這批乒乓球直徑的平均值和中位數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.甲、乙兩人練習罰球,每人練習6組,每組罰球20個,命中個數(shù)的莖葉圖如圖:
(1)求甲命中個數(shù)的中位數(shù)和乙命中個數(shù)的眾數(shù);
(2)通過計算,比較甲乙兩人的罰球水平.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.下列函數(shù)中,既是偶函數(shù),又在區(qū)間(0,+∞)上單調(diào)遞減的是(  )
A.$y={x^{\frac{1}{2}}}$B.y=x2C.y=-x|x|D.y=x-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.如果一個幾何體的三視圖如圖所示,主視圖與左視圖是邊長為2的正三角形、俯視圖輪廓為正方形,(單位:cm),則此幾何體的表面積是( 。
A.8cm2B.$4\sqrt{3}$ cm2C.12 cm2D.$4+4\sqrt{3}$ cm2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.設函數(shù)f(x)對任意實數(shù)x滿足f(x)=-f(x+2),且當0≤x≤2時,f(x)=x(x-2),則f(-2017)=1.

查看答案和解析>>

同步練習冊答案