7.設函數(shù)f(x)對任意實數(shù)x滿足f(x)=-f(x+2),且當0≤x≤2時,f(x)=x(x-2),則f(-2017)=1.

分析 據(jù)函數(shù)f(x)對任意實數(shù)x滿足f(x)=-f(x+2),得出函數(shù)的周期性,再進行轉(zhuǎn)化求解即可得到結(jié)論.

解答 解:∵f(x)=-f(x+2),
∴f(x+2)=-f(x),
∴f(x+4)=-f(x+2)=f(x),
∴f(x)是周期函數(shù),周期為4.
∴f(-2017)=f(-504×4-1)=f(-1)=-f(1)=1,
故答案為1.

點評 本題主要考查函數(shù)周期性,利用函數(shù)周期性進行轉(zhuǎn)化是解決本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

17.運行如圖所示的程序框圖,若輸出的結(jié)果為$\frac{5}{11}$,則判斷框內(nèi)可以填(  )
A.k>8?B.k≥9?C.k≥10?D.k>11?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知向量$\overrightarrow{a}$=(-1,0),$\overrightarrow$=($\frac{\sqrt{3}}{2}$,$\frac{1}{2}$),則向量$\overrightarrow{a}$與$\overrightarrow$ 的夾角為( 。
A.$\frac{π}{6}$B.$\frac{5π}{6}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知平面α截一球面得圓M,過圓M的圓心的平面β與平面α所成二面角的大小為60°,平面β截該球面得圓N,若該球的表面積為64π,圓M的面積為4π,則圓N的半徑為$\sqrt{13}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.函數(shù)f(x)=$\sqrt{3-x}$+lg(x+2)的定義域為(  )
A.(-2,3)B.(-2,3]C.(-2,+∞)D.[-2,3]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.設函數(shù)f(x)=2x+2ax+b且f(-1)=$\frac{5}{2}$,f(0)=2.
(1)求a,b的值; 判斷函數(shù)f(x)的奇偶性;
(2)判斷函數(shù)f(x)在(0,+∞)上的單調(diào)性;
(3)若關于x的方程mf(x)=2-x在[-1,1]上有解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.如圖,在平行四邊形ABCD中,AB=4,AD=3,∠DAB=$\frac{π}{3}$,點E,F(xiàn)分別在BC,DC邊上,且$\overrightarrow{BE}$=$\frac{1}{2}$$\overrightarrow{EC}$,$\overrightarrow{DF}$=$\overrightarrow{FC}$,則$\overrightarrow{AE}$•$\overrightarrow{EF}$=-3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.將斜邊長為4的等腰直角三角形繞其斜邊所在直線旋轉(zhuǎn)一周,則所形成的幾何體體積是$\frac{16π}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.函數(shù)y=(x+1)0+ln(-x2-3x+4)的定義域為{x|-4<x<-1或-1<x<1}.

查看答案和解析>>

同步練習冊答案