函數(shù)的最大值2,其圖象相鄰兩條對稱軸之間的距離為。
(1)求的解析式;
(2)求函數(shù)的單調(diào)增區(qū)間;

(1) ;(2)

解析試題分析:(1)由題意:A=2,,即,
所以函數(shù)解析式為: 
(2)令 
 

考點:本題主要考查三角函數(shù)的圖象和性質(zhì)。
點評:基礎(chǔ)題,在復(fù)合三角函數(shù)研究單調(diào)性時,注意觀察內(nèi)外層函數(shù)構(gòu)成。復(fù)合函數(shù)的單調(diào)性具有規(guī)律:內(nèi)外層函數(shù),“同增異減”。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù), 其中
,其中相鄰兩對稱軸間的距離不小于
(1)求的取值范圍;
(2)在中,、分別是角A、B、C的對邊,,當(dāng)最大時,的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

化簡:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(滿分12分)已知函數(shù).
(1)求函數(shù)的最小正周期和最大值;
(2)求函數(shù)在區(qū)間上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)已知為坐標(biāo)原點,向量,,是直線上一點,且;
(1)設(shè)函數(shù), ,討論的單調(diào)性,并求其值域;
(2)若點、、共線,求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)設(shè)函數(shù)
(Ⅰ)求的周期和最大值
(Ⅱ)求的單調(diào)遞增區(qū)間

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分10分)
已知向量,函數(shù).
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)在中,分別是角的對邊,,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知函數(shù),(Ⅰ)確定函數(shù)的單調(diào)增區(qū)間;(Ⅱ)當(dāng)函數(shù)取得最大值時,求自變量的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知函數(shù)

(Ⅰ)求函數(shù)的對稱軸方程;
(Ⅱ)畫出在區(qū)間上的圖象,并求上的最大值與最小值.

查看答案和解析>>

同步練習(xí)冊答案