分析 (1)利用二項展開式的通項公式求出前三項的系數(shù),列出方程求出n,再利用二項展開式的通項公式求出通項,令x的指數(shù)為0得到常數(shù)項,由方程無解得證;
(2)令展開式中的x的指數(shù)為有理數(shù),求出k值,再寫出相應(yīng)的有理項.
解答 解:依題意,前三項系數(shù)的絕對值是1,C1n($\frac{1}{2}$),C2n($\frac{1}{2}$)2,
且2C1n•$\frac{1}{2}$=1+C2n($\frac{1}{2}$)2,
即n2-9n+8=0,解得n=8或n=1(不合題意,舍去),
∴展開式的第k+1項為
Ck8($\sqrt{x}$)8-k(-$\frac{1}{2\root{4}{x}}$)k
=(-$\frac{1}{2}$)kCk8•${x}^{\frac{8-k}{2}}$•${x}^{-\frac{k}{4}}$
=(-$\frac{1}{2}$)k•Ck8•${x}^{\frac{16-3k}{4}}$;
(1)證明:若第k+1項為常數(shù)項,
當(dāng)且僅當(dāng)$\frac{16-3k}{4}$=0,即3k=16,
由k∈Z得這是不可能的,
所以其展開式中沒有常數(shù)項;
(2)若第k+1項為有理項,當(dāng)且僅當(dāng)$\frac{16-3k}{4}$為整數(shù),
∵0≤k≤8,k∈Z,∴k=0,4,8,
即展開式中的有理項共有三項,它們是:
T1=x4,T5=$\frac{35}{8}$x,T9=$\frac{1}{256}$x-2.
點評 本題考查了利用二項展開式的通項公式解決二項展開式的特定項問題,是綜合性題目.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | 1 | C. | $\frac{3}{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | $1+\sqrt{3}$ | C. | 3$\sqrt{3}$ | D. | $3+\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
性別 是否需要志愿者 | 男 | 女 |
需要 | 70 | 40 |
不需要 | 30 | 60 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 5 | C. | 6 | D. | 7 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com