過點(1,0)的直線l與中心在原點,焦點在x軸上且離心率為的橢圓C相交于A、B兩點,直線y=x過線段AB的中點,同時橢圓C上存在一點與右焦點關(guān)于直線l對稱,試求直線l與橢圓C的方程.

所求橢圓C的方程為 =1,l的方程為y=-x+1


解析:

解法一: 由e=,得,從而a2=2b2,c=b.

設(shè)橢圓方程為x2+2y2=2b2,A(x1,y1),B(x2,y2)在橢圓上.

x12+2y12=2b2,x22+2y22=2b2,兩式相減得,(x12x22)+2(y12y22)=0,

設(shè)AB中點為(x0,y0),則kAB=-,又(x0,y0)在直線y=x上,y0=x0,于是-=-1,kAB=-1,設(shè)l的方程為y=-x+1.

右焦點(b,0)關(guān)于l的對稱點設(shè)為(x′,y′),

由點(1,1-b)在橢圓上,得1+2(1-b)2=2b2,b2=.

∴所求橢圓C的方程為 =1,l的方程為y=-x+1.

解法二: 由e=,從而a2=2b2,c=b.

設(shè)橢圓C的方程為x2+2y2=2b2,l的方程為y=k(x-1),

l的方程代入C的方程,得(1+2k2)x2-4k2x+2k2-2b2=0,則x1+x2=,y1+y2=k(x1-1)+k(x2-1)=k(x1+x2)-2k=-.

直線l: y=xAB的中點(),則,解得k=0,或k=-1.

k=0,則l的方程為y=0,焦點F(c,0)關(guān)于直線l的對稱點就是F點本身,不能在橢圓C上,所以k=0舍去,從而k=-1,直線l的方程為y=-(x-1),即y=-x+1,以下同解法一.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:全優(yōu)設(shè)計選修數(shù)學(xué)-2-1蘇教版 蘇教版 題型:013

過點(1,0)的直線與雙曲線=1的右支交于A、B兩點,則直線AB的斜率k的取值范圍是

[  ]
A.

|k|≥1

B.

<|k|<2

C.

|k|≤

D.

|k|<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:江蘇省泰州中學(xué)2010-2011學(xué)年高二下學(xué)期期中考試數(shù)學(xué)文科試題 題型:022

若存在過點(1,0)的直線與曲線y=x3和y=ax2x-9都相切,則a等于________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:江西省六校2012屆高三第一次聯(lián)考數(shù)學(xué)理科試題 題型:044

已知定義在(0,+∞)上的函數(shù)是增函數(shù)

(1)求常數(shù)k的取值范圍

(2)過點(1,0)的直線與f(x)()的圖象有交點,求該直線的斜率的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012屆湖北省高二下學(xué)期期中考試?yán)砜茢?shù)學(xué)卷 題型:解答題

過點(1,0)的直線與中心在原點,焦點在x軸上且離心率為的橢圓C相交于A、B兩點,直線y=x過線段AB的中點,同時橢圓C上存在一點與其右焦點關(guān)于直線l對稱,試求直線l與橢圓C的方程  

 

查看答案和解析>>

同步練習(xí)冊答案