某校團(tuán)對(duì)“學(xué)生性別與是否喜歡韓劇有關(guān)”作了一次調(diào)查,其中女生人數(shù)是男生人數(shù)的
1
2
,男生喜歡韓劇的人數(shù)占男生人數(shù)的
1
6
,女生喜歡韓劇的人數(shù)占女生人數(shù)的
2
3
.若在犯錯(cuò)誤的概率不超過0.05的前提下認(rèn)為是否喜歡韓劇和性別有關(guān),則男生至少有多少人?
考點(diǎn):獨(dú)立性檢驗(yàn)的應(yīng)用
專題:應(yīng)用題,概率與統(tǒng)計(jì)
分析:設(shè)男生人數(shù)為x,依題意可得列聯(lián)表;根據(jù)所給的表格中的數(shù)據(jù),代入求觀測(cè)值的公式,求出觀測(cè)值同臨界值進(jìn)行比較,即可得出結(jié)論..
解答: 解 設(shè)男生人數(shù)為x,依題意可得列聯(lián)表如下:
喜歡韓劇不喜歡韓劇總計(jì)
男生
x
6
5x
6
x
女生
x
3
x
6
x
2
總計(jì)
x
2
x
3x
2
若在犯錯(cuò)誤的概率不超過0.05的前提下認(rèn)為是否喜歡韓劇和性別有關(guān),則k>3.841,
由k=
3x
2
(
x2
36
-
5x2
18
)2
x
2
•x•x•
x
2
=
3
8
x>3.841,解得x>10.24,
x
2
,
x
6
為整數(shù),
∴若在犯錯(cuò)誤的概率不超過0.05的前提下認(rèn)為是否喜歡韓劇和性別有關(guān),則男生至少有12人.
點(diǎn)評(píng):本題考查獨(dú)立性檢驗(yàn)知識(shí),考查學(xué)生的計(jì)算能力,考查學(xué)生分析解決問題的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在[0,2]上任取兩個(gè)數(shù)a,b,則函數(shù)f(x)=x2+
a
x+b無零點(diǎn)的概率為(  )
A、
1
8
B、
1
4
C、
3
4
D、
7
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將一個(gè)質(zhì)地均勻的正方體(六個(gè)面上分別標(biāo)有數(shù)字0,1,2,3,4,5)和一個(gè)正四面體(四個(gè)面分別標(biāo)有數(shù)字1,2,3,4)同時(shí)拋擲1次,規(guī)定“正方體向上的面上的數(shù)字為a,正四面體的三個(gè)側(cè)面上的數(shù)字之和為b”.設(shè)點(diǎn)M的坐標(biāo)為(a,b)
(1)若集合A={(a,b)|點(diǎn)M在y軸上},用列舉法表示集合A;
(2)求事件“點(diǎn)(a,b)不在圓x2+(y-6)2=9外部”發(fā)生的概率P.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)G是△ABC的重心,A(0,-1),B(0,1),在x軸上有一點(diǎn)M滿足|
MA
|=|
MC
|,
GM
AB
(λ∈R),求點(diǎn)C的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD的底面ABCD是矩形,AD=1,AB=2,點(diǎn)F在PB上,且AF=PF=FB=
2
,面PAB⊥面ABCD,點(diǎn)E在BC上.
(1)確定點(diǎn)E的位置,使EF∥平面PAC;
(2)在(1)的條件上,求幾何體PADCEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tanα=3,求下列各式的值:
(1)
3
cos(-π-α)-sin(π+α)
3
cos(
π
2
+α)+sin(
2
-α)

(2)2sin2α-3sinαcosα-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a為正常數(shù),點(diǎn)A,B的坐標(biāo)分別是(-a,0),(a,0),直線AM,BM相交于點(diǎn)M,且它們的斜率之積是-
1
a2

(1)求點(diǎn)M的軌跡方程,并指出方程所表示的曲線;
(2)當(dāng)a=
2
時(shí),過點(diǎn)F(1,0)作直線l∥AM,記l與(1)中軌跡相交于兩點(diǎn)P,Q,動(dòng)直線AM與y軸交與點(diǎn)N,證明
|PQ|
|AM||AN|
為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若等差數(shù)列{an}滿足:a12+a1a2+
5
4
a22≤1,求a1+a2+a3…+a15的最大正整數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0),D(1,0),過橢圓C的焦點(diǎn)F(
2
,0)且垂直于1x軸的直線與橢圓交于A,B兩點(diǎn),
OA
OB
=
5
3

(Ⅰ)求橢圓C的方程;
(Ⅱ)過點(diǎn)D的直線與橢圓C交于M,N兩點(diǎn),若
MD
=2
DN
,求直線MN的方程;
(Ⅲ)設(shè)直線y=kx+2交橢圓于P,Q兩點(diǎn),若
DP
DQ
=0,求k的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案