設(shè)a,b是異面直線,給出下列四個(gè)命題:
①存在平面α,β,使a?α,b?β,α∥β;
②存在惟一平面α,使a,b與α距離相等;
③空間存在直線c,使c上任一點(diǎn)到a,b距離相等;
④與a,b都相交的兩條直線m,n一定是異面直線.
其中正確命題的個(gè)數(shù)有


  1. A.
    1個(gè)
  2. B.
    2個(gè)
  3. C.
    3個(gè)
  4. D.
    4個(gè)
C
分析:根據(jù)題意,①分別過兩異面直線與其公垂線的交點(diǎn)作平面即可,②過其公垂線的中點(diǎn)作與公垂線垂直的平面;③過其公垂線的中點(diǎn)作與公垂線垂直的平面內(nèi)任一條直線都可以.④若m,n與a相交與同一點(diǎn),則m,n就不是異面直線;綜合可得答案.
解答:設(shè)a,b是異面直線,給出下列四個(gè)命題:
分別過兩異面直線與其公垂線的交點(diǎn)作平面,有a?α,b?β,α∥β;①正確.
過其公垂線的中點(diǎn)作與公垂線垂直的平面.使a,b與α距離相等;②正確.
過其公垂線的中點(diǎn)作與公垂線垂直的平面內(nèi)任一條直線都可以.③正確.
若m,n與a相交與同一點(diǎn),則m,n就不是異面直線.不正確.
點(diǎn)評(píng):本題主要考查異面直線及其公垂線,在探討中要注意運(yùn)用幾何模型.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

8、設(shè)a、b是異面直線,α、β是兩個(gè)平面,且a⊥α,b⊥β,a?β,b?α,則當(dāng)
a⊥b
(填上一種條件即可)時(shí),有α⊥β.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

9、設(shè)a,b是異面直線,給出下列四個(gè)命題:
①存在平面α,β,使a?α,b?β,α∥β;
②存在惟一平面α,使a,b與α距離相等;
③空間存在直線c,使c上任一點(diǎn)到a,b距離相等;
④與a,b都相交的兩條直線m,n一定是異面直線.
其中正確命題的個(gè)數(shù)有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

18、如圖,設(shè)a、b是異面直線,AB是a、b的公垂線,過AB的中點(diǎn)O作平面α與a、b分別平行,M、N分別是a、b上的任意兩點(diǎn),MN與α交于點(diǎn)P,求證:P是MN的中點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a,b是異面直線,a?平面α,則過b與α平行的平面( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題:
(1)若a、b是異面直線,則一定存在平面α過a且與b平行;
(2)設(shè)a、b是異面直線,若直線c、d與a、b都分別相交,則c、d是異面直線;
(3)若平面α內(nèi)有不共線的三點(diǎn)A、B、C到平面β的距離都相等,則α∥β;
(4)分別位于兩個(gè)不同平面α、β內(nèi)的兩條直線a、b一定是異面直線;
(5)直線a⊥α,b∥α,則a⊥b.
上述命題中,是假命題的有
(2),(3),(4)
(2),(3),(4)
.(填上全部假命題的序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案