2.圓(x-1)2+(y-2)2=5的圓心坐標(biāo)是(1,2).

分析 根據(jù)圓的標(biāo)準(zhǔn)方程的形式求出圓心坐標(biāo).

解答 解:圓(x-1)2+(y-2)2=5的圓心坐標(biāo)是(1,2),
故答案為(1,2).

點(diǎn)評 本題主要考查圓的標(biāo)準(zhǔn)方程的形式,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知極坐標(biāo)系的極點(diǎn)和極軸與平面直角坐標(biāo)的原點(diǎn)和X軸重合時(shí),極坐標(biāo)(2,π)化為平面直角坐標(biāo)是(  )
A.(2,0)B.(-2,0)C.(0,2)D.(0,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知一個(gè)公園的形狀如圖所示,現(xiàn)有3種不同的植物要種在此公園的A,B,C,D,E這五個(gè)區(qū)域內(nèi),要求有公共邊界的兩塊相鄰區(qū)域種不同的植物,則不同的種法共有18種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知函數(shù)f(x)的導(dǎo)函數(shù)f′(x)=3+cosx,x∈(-1,1),且f(0)=0,如果f(1-x)+f(1-x2)<0,則實(shí)數(shù)x的取值范圍為(1,$\sqrt{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.復(fù)數(shù)z滿足z=$\frac{2-i}{1-i}$,則z=( 。
A.1+3iB.3-iC.$\frac{3}{2}$+$\frac{1}{2}$iD.$\frac{1}{2}$+$\frac{3}{2}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.等差數(shù)列{an}的前m項(xiàng)和為30,前3m項(xiàng)和為90,則它的前2m項(xiàng)和為60.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,A(a,0),B(0,b),O(0,0),△OAB的面積為4,
(1)求橢圓的標(biāo)準(zhǔn)方程
(2)設(shè)直線l:y=kx+1與橢圓C相交于P,Q兩點(diǎn),是否存在這樣的實(shí)數(shù)k,使得以PQ為直徑的圓過原點(diǎn),若存在,請求出k的值:若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)y=ax2+bx+c,其中a,b,c∈{0,1,2},則不同的二次函數(shù)的個(gè)數(shù)共有( 。
A.256個(gè)B.18個(gè)C.16個(gè)D.10個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=$\frac{2ax-{a}^{2}+1}{{x}^{2}+1}$,其中a∈R.
(1)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程;
(2)當(dāng)a≠0時(shí),求函數(shù)f(x)的單調(diào)區(qū)間與極值.

查看答案和解析>>

同步練習(xí)冊答案