A. | B. | C. | D. |
分析 根據(jù)條件求出a、b的范圍,可得函數(shù)y=loga(x+b)的單調(diào)性以及圖象經(jīng)過的定點(diǎn),結(jié)合所給的選項(xiàng)得出結(jié)論.
解答 解:有函數(shù)的圖象可得0<b<1,$\frac{T}{2}$=$\frac{π}{a}$>2π-π,∴0<a<1.
故函數(shù)y=loga(x+b)為減函數(shù),且圖象經(jīng)過點(diǎn)(1-b,0),(0,logab),logab>0.
結(jié)合所給的選項(xiàng),
故選:C.
點(diǎn)評 本題主要考查函數(shù)y=Asin(ωx+φ)的圖象特征,對數(shù)函數(shù)的圖象和性質(zhì),屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | -1 | C. | -$\frac{1}{4}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | 2$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若a2+b2≠0,則a≠0且b≠0 | B. | 若a2+b2≠0,則a≠0或b≠0 | ||
C. | 若a≠0且b≠0,則a2+b2≠0 | D. | 若a≠0或b≠0,則a2+b2≠0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com