分析 設(shè)橢圓方程為$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1$,(a>b>0),由題意求出a,b,c,由此能求出該橢圓的離心率.
解答 解:不妨設(shè)橢圓方程為$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1$,(a>b>0),
由題意得$\left\{\begin{array}{l}{2a=2a-4}\\{b=2}\end{array}\right.$,
解得a=8,b=2,c=$\sqrt{64-4}$=2$\sqrt{15}$,
∴該橢圓的離心率為e=$\frac{c}{a}$=$\frac{2\sqrt{15}}{8}$=$\frac{\sqrt{15}}{4}$.
故答案為$\frac{\sqrt{15}}{4}$.
點(diǎn)評(píng) 本題考查橢圓的離心率的求法,解題時(shí)要認(rèn)真審題,注意橢圓性質(zhì)的合理運(yùn)用,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -sin3-cos3 | B. | sin3-cos3 | C. | sin3+cos3 | D. | cos3-sin3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{5}$ | B. | $\frac{1}{7}$ | C. | $\frac{1}{12}$ | D. | $\frac{1}{60}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com