分析 取CD中點O,連結AO,BO,則∠AOB是二面角A-CD-B的平面角,由此能求出二面角A-CD-B的余弦值.
解答 解:取CD中點O,連結AO,BO,
∵三棱錐A-BCD的各棱長均為2,
∴AO⊥CD,BO⊥CD,
∴∠AOB是二面角A-CD-B的平面角,
由題意得AO=BO=$\sqrt{3}$,AB=2,
∴cos∠AOB=$\frac{A{O}^{2}+B{O}^{2}-A{B}^{2}}{2AO•BO}$=$\frac{3+3-4}{2\sqrt{3}•\sqrt{3}}$=$\frac{1}{3}$.
∴二面角A-CD-B的余弦值為$\frac{1}{3}$.
點評 本題考查二面角的余弦值的求法,是中檔題,解題時要認真審題,注意空間思維能力的培養(yǎng).
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\sqrt{6}$ | B. | $\sqrt{3}$ | C. | $\sqrt{2}$ | D. | 1 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (3,0) | B. | (3,$\frac{π}{2}$) | C. | (-3,$\frac{2π}{3}$) | D. | (3,$\frac{11π}{6}$) |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com