精英家教網 > 高中數學 > 題目詳情
10.已知三棱錐A-BCD的各棱長均為2,求二面角A-CD-B的余弦值.

分析 取CD中點O,連結AO,BO,則∠AOB是二面角A-CD-B的平面角,由此能求出二面角A-CD-B的余弦值.

解答 解:取CD中點O,連結AO,BO,
∵三棱錐A-BCD的各棱長均為2,
∴AO⊥CD,BO⊥CD,
∴∠AOB是二面角A-CD-B的平面角,
由題意得AO=BO=$\sqrt{3}$,AB=2,
∴cos∠AOB=$\frac{A{O}^{2}+B{O}^{2}-A{B}^{2}}{2AO•BO}$=$\frac{3+3-4}{2\sqrt{3}•\sqrt{3}}$=$\frac{1}{3}$.
∴二面角A-CD-B的余弦值為$\frac{1}{3}$.

點評 本題考查二面角的余弦值的求法,是中檔題,解題時要認真審題,注意空間思維能力的培養(yǎng).

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

14.人如圖,在四棱錐P-ABCD中,底面ABCD是梯形,AB∥CD,∠BAD=60°,AB=2AD,AP⊥BD.
(1)證明:平面ABD⊥平面PAD;
(2)若PA與平面ABCD所成的角為60°,AD=2,PA=PD,求點C到平面PAB的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

15.已知函數f(x)=lnx-ax2-x(a∈R).
(1)若f(x)在定義域上是增函數,求實數a的取值范圍;
(2)若-$\frac{1}{9}$≤a≤-$\frac{1}{10}$,證明:方程f′(x)=0有兩個不等實根x1,x2,并求|x2-x1|的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

12.函數y=2cos2($\frac{x}{2}$-$\frac{π}{4}$),(x∈R)的遞減區(qū)間是[2kπ+$\frac{π}{2}$,2kπ+$\frac{3π}{2}$],k∈Z.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

5.在底面為平行四邊形的四棱錐P-ABCD中,AB⊥AC,PA⊥平面ABCD,且PA=AB=2,BC=4,E是PD的中點,求平面EAC與平面ABCD的夾角.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

15.如圖所示,在三棱柱ABC-A1B1C1中,矩形ABB1A1的對角線相交于點G,且側面ABB1A1⊥平面ABC,AC=CB=BB1=2,F(xiàn)為CB1上的點,且BF⊥平面AB1C.
(1)求證:AC⊥平面BB1C1C;
(2)求二面角A1-B1C-B的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

2.設線性方程組的增廣矩陣為$(\begin{array}{l}{2}&{3}&{{t}_{1}}\\{0}&{1}&{{t}_{2}}\end{array})$,解為$\left\{\begin{array}{l}{x=3}\\{y=5}\end{array}\right.$,則三階行列式$[\begin{array}{l}{1}&{-1}&{{t}_{1}}\\{0}&{1}&{-1}\\{-1}&{{t}_{2}}&{-6}\end{array}]$的值為19.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

19.已知正方體ABCD-A1B1C1D1的棱長為3,E為CD的中點,則點D1到平面AEC1的距離為( 。
A.$\sqrt{6}$B.$\sqrt{3}$C.$\sqrt{2}$D.1

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

20.在極坐際系內,點(3,$\frac{π}{2}$)關于直線θ=$\frac{π}{6}$(ρ∈R)的對稱點的坐標為( 。
A.(3,0)B.(3,$\frac{π}{2}$)C.(-3,$\frac{2π}{3}$)D.(3,$\frac{11π}{6}$)

查看答案和解析>>

同步練習冊答案