5.在底面為平行四邊形的四棱錐P-ABCD中,AB⊥AC,PA⊥平面ABCD,且PA=AB=2,BC=4,E是PD的中點(diǎn),求平面EAC與平面ABCD的夾角.

分析 以A為原點(diǎn),AC為x軸,AB為y軸,AP為z軸,建立空間直角坐標(biāo)系,利用向量法能求出平面EAC與平面ABCD的夾角.

解答 解:∵AB⊥AC,PA⊥平面ABCD,且PA=AB=2,BC=4,E是PD的中點(diǎn),
∴以A為原點(diǎn),AC為x軸,AB為y軸,AP為z軸,建立空間直角坐標(biāo)系,
P(0,0,2),D(2$\sqrt{3}$,-2,0),E($\sqrt{3}$,-1,1),A(0,0,0),
C(2$\sqrt{3}$,0,0),
$\overrightarrow{AE}$=($\sqrt{3},-1,1$),$\overrightarrow{AC}$=(2$\sqrt{3}$,0,0),
設(shè)平面AEC的法向量$\overrightarrow{n}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AE}=\sqrt{3}x-y+z=0}\\{\overrightarrow{n}•\overrightarrow{AC}=2\sqrt{3}x=0}\end{array}\right.$,取y=1,得$\overrightarrow{n}$=(0,1,1),
平面ABCD的法向量$\overrightarrow{m}$=(0,0,1),
設(shè)平面EAC與平面ABCD的夾角為θ,
則cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2}$.
∴$θ=arccos\frac{\sqrt{2}}{2}$=$\frac{π}{4}$,
∴平面EAC與平面ABCD的夾角為$\frac{π}{4}$.

點(diǎn)評(píng) 本題考查二面角的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意向量法的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知底面為平行四邊形的四棱錐S-ABCD中,P為SB中點(diǎn),Q為AD上一點(diǎn),若PQ∥面SDC,求AQ:QD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.若實(shí)數(shù)a,b,c成等差數(shù)列,動(dòng)直線l:ax+by+c=0與圓x2+y2=9相交于A,B兩點(diǎn),則使得弦長(zhǎng)|AB|為整數(shù)的直線l共有(  )條.
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.如果采用圓外切多邊形的周長(zhǎng)逐漸逼近圓周長(zhǎng)的算法計(jì)算圓周率π,其所計(jì)算出π的值是( 。
A.精確值B.不足近似值C.過(guò)剩近似值D.以上都有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.A={x|y=$\sqrt{1-{x}^{2}}$},B={y|y=$\sqrt{1-{x}^{2}}$},C={x,y)|y=$\sqrt{1-{x}^{2}}$},A,B,C是同一個(gè)集合嗎?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知三棱錐A-BCD的各棱長(zhǎng)均為2,求二面角A-CD-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖,在五棱錐S-ABCDE中,SA⊥底面ABCDE,SA=AB=AE=2,BC=DE=$\sqrt{3}$,∠BAE=∠BCD=∠CDE=120°
(1)求證:SB⊥BC;
(2)求點(diǎn)E到平面SCD的距離;
(3)求平面SCB與平面SCA的夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖,AC為線段BD的垂直平分線,且AE=BE=$\frac{1}{2}$CE=1,現(xiàn)將△BCD沿線段BD翻折到PBD,使二面角P-BD-A為60°.
(1)證明:PA⊥平面ABD;
(2)設(shè)AB的中點(diǎn)為F,求點(diǎn)F到平面PBD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=-1+cosα}\\{y=sinα}\end{array}\right.$(α為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸.建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρ(cosθ+ksinθ)=-2(k為實(shí)數(shù)).
(1)判斷曲線C1與直線l的位置關(guān)系,并說(shuō)明理由;
(2)若曲線C1和直線l相交于A,B兩點(diǎn),且|AB|=$\sqrt{2}$,求直線l的斜率.

查看答案和解析>>

同步練習(xí)冊(cè)答案