1.一個人連續(xù)射擊三次,事件“至少有一次擊中目標(biāo)”的對立事件是( 。
A.至多有一次擊中目標(biāo)B.三次都不擊中目標(biāo)
C.三次都擊中目標(biāo)D.只有一次擊中目標(biāo)

分析 利用對立事件的定義直接求解.

解答 解:一個人連續(xù)射擊三次,
事件“至少有一次擊中目標(biāo)”的對立事件是“三次都不擊中目標(biāo)”.
故選:B.

點評 本題考查對立事件的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意對立事件的定義的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.要得到函數(shù)f(x)=cos(2x-$\frac{π}{3}$)+1的圖象,只需把y=2cos2x的圖象( 。
A.向左平移$\frac{π}{3}$個單位B.向右平移$\frac{π}{6}$個單位
C.向上平移1個單位D.向上平移2個單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.某同學(xué)通過計算機(jī)測試的概率為$\frac{1}{3}$,他連續(xù)測試3次,且三次測試相互獨立,其中恰有1次通過的概率為$\frac{4}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知tan(-α-$\frac{4}{3}$π)=-5,則tan($\frac{π}{3}$+α)的值為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若將函數(shù)y=sinx+$\sqrt{3}$cosx的圖象向右平移φ(φ>0)個單位長度得到函數(shù)y=sinx-$\sqrt{3}$cosx的圖象,則φ的最小值為$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知數(shù)列{an}滿足$\frac{1}{{a}_{n}+1}$=$\frac{2}{{a}_{n+1}+1}$,且a2=2,則a7=95.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的兩焦點為F1(-c,0)、F2(c,0),P為橢圓上一點,|PF1|=|F1F2|,直線PF1與y軸交于點M,F(xiàn)2M為∠PF2F1的角平分線,求離心率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知定義在R上的函數(shù)f(x)滿足:①對任意x∈R,有f(x+2)=2f(x);②當(dāng)x∈[-1,1]時,f(x)=$\sqrt{1-{x}^{2}}$.若函數(shù)g(x)=$\left\{\begin{array}{l}{{e}^{x},x≤0}\\{lnx,x>0}\end{array}\right.$則函數(shù)y=f(x)-g(x)在區(qū)間(-4,5)上的零點個數(shù)是(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知${z_1}=5+10i,{z_2}=3-4i,\frac{1}{z}=\frac{1}{z_1}+\frac{1}{z_2}$,則z的值為(  )
A.$\frac{5}{2}+5i$B.$\frac{5}{2}-5i$C.$5-\frac{5}{2}i$D.$-5+\frac{5}{2}i$

查看答案和解析>>

同步練習(xí)冊答案