分析 利用兩角和與差的公式以及輔助角公式,通過三角函數(shù)的有界限可得答案.
解答 解:令S=cos(x+y)+cosx+2cosy
=cosxcosy-sinxsiny+cosx+2cosy
=cosx+(cosx+2)cosy-sinxsiny
=cosx+$\sqrt{5+4cosx}sin(y+$θ)
∴S≥cosx-$\sqrt{5+4cosx}$
令:t=$\sqrt{5+4cosx}$,3≥t≥1,則cosx=${\frac{1}{4}(t}^{2}-5)$
故S≥${\frac{1}{4}(t}^{2}-5)$-t=$\frac{1}{4}(t-2)^{2}-\frac{9}{4}$,(3≥t≥1)
當(dāng)t=2時,S取得最小值為:$-\frac{9}{4}$.
∴即cos(x+y)+cosx+2cosy的最小值為:$-\frac{9}{4}$.
故答案為:-2.25.
點評 本題考察了利用兩角和與差的公式以及輔助角公式,三角函數(shù)的有界限的運用.屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [4,6] | B. | [6,+∞) | C. | (-∞,4] | D. | (4,6) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 40 | B. | 50 | C. | 120 | D. | 155 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | B. | ||||
C. | D. |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com