精英家教網 > 高中數學 > 題目詳情
已知橢圓的標準方程為
x2
6n-3
+
y2
2n
=1(n∈N*)
,若橢圓的焦距為2
5
,則n的取值集合為
{2,4,5}
{2,4,5}
分析:由題設條件,分橢圓的焦點在x軸上和橢圓的焦點在y軸上兩種情況進行討論,結合橢圓中a2=b2+c2進行求解.
解答:解:∵橢圓的標準方程為
x2
6n-3
+
y2
2n
=1(n∈N*)
,橢圓的焦距為2
5
,
∴當橢圓的焦點在x軸上時,6n-3-2n=5,
解得n=2,或n=4;
當橢圓的焦點在y軸上時,2n-6n+3=5,
解得n=5.
綜上所述,n的取值集合是{2,4,5},
故答案為:{2,4,5}.
點評:本題考查橢圓的簡單性質,是基礎題.解題時要認真審題,仔細解答,注意分類討論思想的合理運用.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知橢圓的標準方程為
x2
25
+
y2
m2
=1(m>0)
,并且焦距為6,則實數m的值為
4或
34
4或
34

查看答案和解析>>

科目:高中數學 來源: 題型:

(2008•奉賢區(qū)二模)已知橢圓的標準方程為
x2
4
+
y2
3
=1
,則該橢圓的焦距為
2
2

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓的標準方程為
x2
6-m
+
y2
m-1
=1

(1)若橢圓的焦點在x軸,求m的取值范圍;          
(2)試比較m=2與m=3時兩個橢圓哪個更扁.

查看答案和解析>>

科目:高中數學 來源:2013屆云南省潞西市高二下學期期中文理數學試卷(解析版) 題型:選擇題

已知橢圓的標準方程為,則橢圓的離心率為(       )

A、       B、      C、      D、 

 

查看答案和解析>>

同步練習冊答案