(本小題滿分12分)
解:(Ⅰ)函數(shù)的定義域:(0,+∞),
當(dāng)a=-2時(shí),f′(x)=
,
當(dāng)x∈(0,
)時(shí),f′(x)>0,函數(shù)是增函數(shù);
當(dāng)x∈(
,+∞)時(shí),f′(x)<0,函數(shù)是減函數(shù).
因?yàn)閒(
)=
,所以此時(shí)在定義域上f(x)<0,
s所以函數(shù)f(x)零點(diǎn)的個(gè)數(shù)為0.;
(Ⅱ)f′(x)=2ax-(a+2)+
=
,
①當(dāng)a≤0時(shí),當(dāng)x∈(0,
)時(shí),f′(x)>0,函數(shù)是增函數(shù);
當(dāng)x∈(
,+∞)時(shí),f′(x)<0,函數(shù)是減函數(shù).
②當(dāng)0<a<2時(shí),
當(dāng)x∈(0,
)時(shí),f′(x)>0,函數(shù)是增函數(shù);
當(dāng)x∈(
,
)時(shí),f′(x)<0,函數(shù)是減函數(shù);
當(dāng)x∈(
,+∞)時(shí),f′(x)>0,函數(shù)是增函數(shù).
③當(dāng)a=2時(shí),f′(x)=
,對(duì)一切x∈(0,+∞)恒成立,當(dāng)且僅當(dāng)x=1時(shí)f′(x)=0,函數(shù)是單調(diào)增函數(shù),單調(diào)增區(qū)間(0,+∞)
④當(dāng)a>2時(shí),
當(dāng)x∈(0,
)時(shí),f′(x)>0,函數(shù)是增函數(shù);
當(dāng)x∈(
,
)時(shí),f′(x)<0,函數(shù)是減函數(shù);
當(dāng)x∈(
,+∞)時(shí),f′(x)>0,函數(shù)是增函數(shù).
綜上:當(dāng)a≤0時(shí),函數(shù)f(x)的單調(diào)增區(qū)間(0,
),單調(diào)減區(qū)間是(
).
當(dāng)0<a<2時(shí),函數(shù)f(x)的單調(diào)增區(qū)間(0,
)和(
),單調(diào)減區(qū)間是(
).
當(dāng)a=2時(shí),函數(shù)的單調(diào)增區(qū)間(0,+∞)
當(dāng)a>2時(shí),函數(shù)f(x)的單調(diào)增區(qū)間(0,
)和(
),單調(diào)減區(qū)間是(
).
分析:(Ⅰ)求出函數(shù)的定義域,通過(guò)a=-2時(shí),求出函數(shù)的導(dǎo)函數(shù),判斷函數(shù)f(x)的極大值,然后推出函數(shù)的零點(diǎn)的個(gè)數(shù);
(Ⅱ)通過(guò)求解函數(shù)的導(dǎo)函數(shù),通過(guò):當(dāng)a≤0,0<a<2,a=2,a>2,分別通過(guò)函數(shù)的導(dǎo)數(shù)列表,然后求函數(shù)f(x)的單調(diào)區(qū)間.
點(diǎn)評(píng):本題考查函數(shù)的導(dǎo)數(shù)的綜合應(yīng)用,函數(shù)的單調(diào)性函數(shù)的極值,考查分類討論以及計(jì)算能力.