若(x-1)7=a0+a1x+a2x2+…+a7x7,則(a0+a2+a4+a62-(a1+a3+a5+a72=
0
0
分析:先令已知等式中的x=1,再令x=-1將得到的兩個等式相乘得到要求的代數(shù)式的值.
解答:解:令x=1得
0=a0+a1+a2+…+a7
令x=-1得-27=a0-a1+a2+…-a7
兩式相乘得
0=(a0+a2+a4+a62-(a1+a3+a5+a72
故答案為:0
點(diǎn)評:求二項展開式的系數(shù)和問題,一般先通過觀察,然后給已知的等式中的未知數(shù)x賦合適的值得到要求的式子的值.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

以下四個命題:
①由圓的過圓心的弦最長的性質(zhì)類比出球的過球心的截面面積最大的性質(zhì);
②若(3x-1)7=a7x7+a6x6+…+a1x+a0,則a7+a6+…+a1=129;
③在含有5件次品的100件產(chǎn)品中,任取3件,則取到兩件次品的概率為
C
2
5
C
1
98
C
3
100
;
④若離散型隨機(jī)變量X的方差為D(X)=2,則D(2X-1)=8.
其中正確命題的序號是(  )
A、①②④B、①②③④
C、①②D、①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(Ⅰ)求(x2+1)(x-2)5展開式中含x6項的系數(shù).
(Ⅱ)若(x2+1)(x-2)5=a0+a1(x-1)+a2(x-1)2+…+a7(x-1)7,求a0+a1+a2+…+a7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

若(x-1)7=a0+a1x+a2x2+…+a7x7,則(a0+a2+a4+a62-(a1+a3+a5+a72=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若(x-1)7=a0+a1x+a2x2+…+a7x7,則(a0+a2+a4+a62-(a1+a3+a5+a72=______.

查看答案和解析>>

同步練習(xí)冊答案