A. | $\frac{\sqrt{11}}{12}$ | B. | $\frac{\sqrt{14}}{12}$ | C. | $\frac{\sqrt{11}}{6}$ | D. | 以上都有可能 |
分析 分三種情況分別計(jì)算棱錐的體積即可.
解答 解:(1)若底邊長(zhǎng)為2,2,2,側(cè)棱長(zhǎng)為2,2,1;
設(shè)AB=1,AB的中點(diǎn)為E,則AB⊥CE,AB⊥DE,
∴AB⊥平面CDE,
∵CE=DE=$\sqrt{{2}^{2}-(\frac{1}{2})^{2}}$=$\frac{\sqrt{15}}{2}$,CD=2,∴cos∠CED=$\frac{C{E}^{2}+D{E}^{2}-C{D}^{2}}{2CE•DE}$=$\frac{7}{15}$,
∴sin∠CED=$\frac{4\sqrt{11}}{15}$.
∴V=$\frac{1}{3}{S}_{△CDE}•AB$=$\frac{1}{3}×\frac{1}{2}×\frac{\sqrt{15}}{2}×\frac{\sqrt{15}}{2}×\frac{4\sqrt{11}}{15}×1$=$\frac{\sqrt{11}}{6}$.
(2)若底邊長(zhǎng)為1,1,1,側(cè)棱長(zhǎng)為2,2,2;
設(shè)底面中心為O,則OB=$\frac{\sqrt{3}}{2}×\frac{2}{3}=\frac{\sqrt{3}}{3}$,
∴棱錐的高h(yuǎn)=$\sqrt{{2}^{2}-(\frac{\sqrt{3}}{3})^{2}}$=$\sqrt{\frac{11}{3}}$,
∴V=$\frac{1}{3}{S}_{△BCD}•h$=$\frac{1}{3}×\frac{\sqrt{3}}{4}×\sqrt{\frac{11}{3}}$=$\frac{\sqrt{11}}{12}$.
(3)若底面邊長(zhǎng)為2,2,1,側(cè)棱長(zhǎng)為2,2,1,
設(shè)AB=CD=1,其余各棱長(zhǎng)均為2,由(1)可知cos∠CED=$\frac{C{E}^{2}+D{E}^{2}-C{D}^{2}}{2CE•DE}$=$\frac{13}{15}$,
∴sin∠CED=$\frac{2\sqrt{14}}{15}$,
∴V=$\frac{1}{3}{S}_{△CDE}•AB$=$\frac{1}{3}×\frac{1}{2}×\frac{\sqrt{15}}{2}×\frac{\sqrt{15}}{2}×\frac{2\sqrt{14}}{15}×1$=$\frac{\sqrt{14}}{12}$.
故選:D.
點(diǎn)評(píng) 本題考查了棱錐的體積計(jì)算,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{9}{4}$ | B. | $\frac{4}{3}$ | C. | $\frac{4}{3}$或2 | D. | $\frac{4}{3}$或$\frac{9}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com