(2007•奉賢區(qū)一模)已知向量
OM
=(3-2),
ON
=(-5,-1),則
1
2
MN
=
(-4,
1
2
(-4,
1
2
分析:依據(jù)向量減法的三角形法則求出向量
MN
的坐標(biāo),再由向量的數(shù)乘運(yùn)算,計(jì)算
1
2
MN
即可
解答:解:
1
2
MN
=
1
2
ON
-
OM
)=
(3,-2)-(-5,-1)
2
=(-4,
1
2

故答案為(-4,
1
2
點(diǎn)評:本題考查了向量減法的三角形法則和向量的數(shù)乘運(yùn)算,解題時(shí)要總結(jié)經(jīng)驗(yàn),提高解題速度
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2007•奉賢區(qū)一模)若sinθ<0,且sin2θ>0,則角θ的終邊所在象限是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•奉賢區(qū)一模)已知:函數(shù)f(x)=
x
ax+b
(a,b∈R,ab≠0)
,f(2)=
2
3
,f(x)=x
有唯一的根.
(1)求a,b的值;
(2)數(shù)列{an}對n≥2,n∈N總有an=f(an-1),a1=1;求出數(shù)列{an}的通項(xiàng)公式.
(3)是否存在這樣的數(shù)列{bn}滿足:{bn}為{an}的子數(shù)列(即{bn}中的每一項(xiàng)都是{an}的項(xiàng))且{bn}為無窮等比數(shù)列,它的各項(xiàng)和為
1
2
.若存在,找出所有符合條件的數(shù)列{bn},寫出它的通項(xiàng)公式,并說明理由;若不存在,也需說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•奉賢區(qū)一模)若虛數(shù)z滿足z+
1
z
∈R
,則|z-2i|的取值范圍是
[1,
5
)∪(
5
,3]
[1,
5
)∪(
5
,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•奉賢區(qū)一模)在一個(gè)口袋里裝有5個(gè)白球和3個(gè)黑球,這些球除顏色外完全相同,現(xiàn)從中摸出3個(gè)球,至少摸到2個(gè)黑球的概率等于
2
7
2
7
 (用分?jǐn)?shù)表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•奉賢區(qū)一模)Sn是等差數(shù)列{an}的前n項(xiàng)和,若a1>0且S19=0,則當(dāng)Sn取得最大值時(shí)的n=
9或10
9或10

查看答案和解析>>

同步練習(xí)冊答案